Answer:
36 degrees
Step-by-step explanation:
I’m pretty sure that’s it
<em>Here's</em><em> </em><em>my</em><em> </em><em>working</em><em> </em><em>for</em><em> </em><em>1</em><em>)</em><em> </em><em>You</em><em> </em><em>need</em><em> </em><em>to</em><em> </em><em>find</em><em> </em><em>the</em><em> </em><em>exterior</em><em> </em><em>angle</em><em>,</em><em> </em><em>then</em><em> </em><em>divide</em><em> </em><em>by</em><em> </em><em>360</em><em> </em><em>to</em><em> </em><em>find</em><em> </em><em>the</em><em> </em><em>number</em><em> </em><em>of</em><em> </em><em>sides</em><em>:</em>
<em>Applying</em><em> </em><em>these</em><em> </em><em>steps</em><em> </em><em>:</em><em> </em>
180 (Interior Angles) - 162 = 18 (Exterior angle)
360 ÷ 18 is<em> </em><em>20</em><em> </em><em>sides</em><em> </em>
<em>For</em><em> </em><em>2</em><em>)</em>
<em>Its</em><em> </em><em>the</em><em> </em><em>same</em><em> </em><em>method</em><em>,</em><em> </em><em>so</em><em> </em><em>apply</em><em> </em><em>the</em><em> </em><em>steps</em><em>:</em>
<em>180</em><em> </em><em>-</em><em> </em><em>175</em><em> </em><em>=</em><em> </em><em>5</em>
<em>360</em><em> </em><em>÷</em><em> </em><em>5</em><em> </em><em>=</em><em> </em><em>72</em><em> </em><em>sides</em><em> </em>
<em>Hope</em><em> </em><em>it</em><em> </em><em>helps</em><em>!</em><em> </em><em>:</em><em>)</em><em> </em>
f(x)= -2 (x - 2) ( x - 4)
if x=2 ⇒ f(x)=y=0 ⇒ graph of f(x) intercept x axis in (2,0)
if x=4 ⇒ f(x)=y=0 ⇒ graph of f(x) intercept x axis in (4,0)
if x=0 ⇒f(x)= -2 *(-2)*(-4)= - 16 ⇒ graph of f(x) intercept y axis in (0,- 16)
⇒ f(x)= -2 (x - 2) ( x - 4) is the answer
Answer:
The probability of picking two consecutive purple marbles without replacement is 14.72%.
Step-by-step explanation:
Initially, there are 4+6+2+8 = 20 total marbles.
The probability of picking a purble marble is
P_{1} = \frac{number of purple marbles}{number of total marbles}
P_{1}= \frac{8}{20} = 0.4
Since there are no replacements, there are now 19 total marbles, 7 of which are purple. So, the probability of picking another purple marble is
P_{2} = \frac{7}{19} = 0.368
The probability P of picking a purble marble(P_{1}), not replacing it, and then picking another purple marble(P_{2}) is:
P = P_{1}*P_{2} = 0.4*0.368 = 0.1472 = 14.72%
Answer:
5+1=6
5/6 x420
5x70=350
Step-by-step explanation: