Answer:
tan (A-B) = ± 4/3
Step-by-step explanation:
COS (A-B) = 3/5
COS² (A-B) = (3/5)² = 9/25 = 1 - sin² (A-B)
sin² (A-B) = 1 - 9/25 = 16/25
sin (A-B) = ± 4/5
tan (A-B) = sin (A-B) / cos (A-B) = (± 4/5) / (3/5) = ± 4/3
<em>Answer: i=9</em>
<em />
<em>Step-by-step explanation:</em>
<em>-16=-4(-5+i)</em>
<em>-16=20-4i</em>
<em>-20 -20</em>
<em>-36=-4i</em>
<em>Divide by -4 </em>
<em>i=9</em>
The answer to the problem is 220
1/sin^2x-1/tan^2x=
1/sin^2x-1/ (sin^2x/cos^2x)<<sin tan= sin/cos>>
= 1/sin^2x- cos^2x / sin^2x
= (1- cos^2x) / sin^2x <<combining into a single fraction>>
sin^2 x / sin^2x <<since 1- cos^2 x sin^2 x
=1
this simplifies to 1.