Answer:
<em>Light-dependent reactions</em>
<em></em>
Explanation:
Photosynthesis occurs in two stages: light-dependent reactions and light independent-reactions. This last stage is often called Calvin cycle.
The diagram shows reactions occurred in the thylakoid membranes which are located inside the chloroplasts. Therefore, we can identify that these reactions are the light-dependent reactions. During this part of photosynthesis, the energy from the sunlight is absorbed by a pigment called chlorophyl (Chl). Then, it is sequentially coverted into chemical energy stored in the form of molecules: NADPH (nitotinamide adenine dinucleotide phosphate) and ATP (adenosine triphosphate).
Answer: The differences in the assembly and organization of the monomers of these two polymers result in different chemical properties.
Explanation:
Starch and Cellulose flare both polysaccharides which are constructed from the same monomer called glucose. The functions they provide in plants are different which includes the following:
- STARCH is used by plants for energy storage because unlike Cellulose, it's formed from glucose units( oriented in the same direction) connected by alpha linkages which can form compact structures that can easily be broken down.
- Cellulose provides structural support for plant cell wall because unlike Starch, it's formed from glucose units( which rotates 180 degrees around the axis of the polymer backbone chain) connected by beta linkages. This pattern gives Cellulose it's rigid features as is allows for hydrogen bonding between two molecules of Cellulose.
Therefore the statement that best describes why starch and cellulose provide different functions in plants is that (The differences in the assembly and organization of the monomers of these two polymers result in different chemical properties).
The Vascular system transports water and sugars throughout the plant during photosynthesis.
If two populations of birds stop interbreeding because of a difference in song patterns this would be described as behavioral isolation.