To determine the minimum of an equation, we derive the <span>equation using differential calculus twice (or simply </span><span>take the second derivative of the function). If the </span><span>second derivative is greater than 0, then it is minimum; </span><span>else, if it is less than 1, the function contains the </span><span>maximum. If the second derivative is zero, then the </span><span>inflection point </span><span>is</span><span> identified.</span>
Answer:
34.3
Step-by-step explanation:
no
B)40 because (4)*50/5 is (4)*10
The real part (-6)
the imaginary part 2i