Answer:

Step-by-step explanation:
The Fundamental Theorem of Calculus states that:
![\displaystyle \frac{d}{dx}\left[ \int_a^x f(t)\, dt \right] = f(x)](https://tex.z-dn.net/?f=%5Cdisplaystyle%20%5Cfrac%7Bd%7D%7Bdx%7D%5Cleft%5B%20%5Cint_a%5Ex%20f%28t%29%5C%2C%20dt%20%20%5Cright%5D%20%3D%20f%28x%29)
Where <em>a</em> is some constant.
We can let:

By substitution:

Taking the derivative of both sides results in:
![\displaystyle g'(s) = \frac{d}{ds}\left[ \int_6^s g(t)\, dt\right]](https://tex.z-dn.net/?f=%5Cdisplaystyle%20g%27%28s%29%20%3D%20%5Cfrac%7Bd%7D%7Bds%7D%5Cleft%5B%20%5Cint_6%5Es%20g%28t%29%5C%2C%20dt%5Cright%5D)
Hence, by the Fundamental Theorem:

The statement best describes Cheryl's computer is option C. Cheryl accelerated to 65 mph, drove at a constant speed for 5.5 minutes, and then decelerated to 45 mph.
<h3>How to find the function which was used to make graph?</h3>
A graph contains data of which input maps to which output.
Analysis of this leads to the relations which were used to make it.
If we know that the function crosses the x-axis at some point, then for some polynomial functions, we have those as roots of the polynomial.
Let's assume the graph of Cheryl's commute was like the one below.
We can see that she started at 0 mph.
One minute later, she was up to 65 mph, so she had accelerated (increased her speed).
At 6.5 min (5.5 min later) her speed was still 65 mph therefore, she was driving at a constant speed.
Over the next 2.5 min, her speed dropped to 45 mph, therefore she was decelerating.
Learn more about finding the graphed function here:
brainly.com/question/27330212
#SPJ1
So, first you divide 75000 by 1000. Then you add 2 to each side. Then that's the answer, x=77
Answer:
M + $13.72 = $58.22
Step-by-step explanation:
Manny and Sam combined (+) have a total (=) of $58.22
M + S = $58.22
M + $13.72 = $58.22
If you are trying to find the interest, it would be $60.00. To get this just multiply everything. Hope this helps!!! :)
<span />