1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Sergeeva-Olga [200]
3 years ago
12

If A(-2,0)b(6,2) and (5,3) are the verticles of a triangle ABC, find its area​

Mathematics
1 answer:
diamong [38]3 years ago
3 0

Answer:

the answer its A=h b/2

Step-by-step explanation:

You might be interested in
Please help!!:
LenKa [72]

Answer:

B

Step-by-step explanation:

I just took test

please make me Brainliest

5 0
3 years ago
PLEASE SOMEONE DO THIS FOR ME: Determine the x - and y - intercepts of the following linear function: 4x + 8y =16
Kitty [74]

Answer:

x = 2 and y = 1

Step-by-step explanation:

4*2 = 8

8 * 1 =8

8+8=16

4(2) + 8(1) = 16

could pls have brainliest!!

3 0
3 years ago
Read 2 more answers
Perform the indicated operation. Be sure the answer is reduced.
avanturin [10]
<h3>Given Equation:-</h3>

\boxed{ \rm  \frac{4x^{2}y^{3}z}{9} \times  \frac{45y}{8 {x}^{5} {z}^{5} }}

<h3>Step by step expansion:</h3>

\dashrightarrow \sf\dfrac{4x^{2}y^{3}z}{9} \times  \dfrac{45y}{8 {x}^{5} {z}^{3} }

\\  \\

\dashrightarrow \sf\dfrac{ \cancel4x^{2}y^{3}z}{9} \times  \dfrac{45y}{ \cancel8 {x}^{5} {z}^{3} }

\\  \\

\dashrightarrow \sf\dfrac{x^{2}y^{3}z}{9} \times  \dfrac{45y}{2{x}^{5} {z}^{3} }

\\  \\

\dashrightarrow \sf\dfrac{x^{2}y^{3}z}{ \cancel9} \times  \dfrac{ \cancel{45}y}{2{x}^{5} {z}^{3} }

\\  \\

\dashrightarrow \sf\dfrac{x^{2}y^{3}z}{1} \times  \dfrac{5y}{2{x}^{5} {z}^{3} }

\\  \\

\dashrightarrow \sf\dfrac{x^{0}y^{3}z}{1} \times  \dfrac{5y}{2{x}^{5 - 2} {z}^{3} }

\\  \\

\dashrightarrow \sf\dfrac{y^{3}z}{1} \times  \dfrac{5y}{2{x}^{3} {z}^{3} }

\\  \\

\dashrightarrow \sf\dfrac{y^{3}z {}^{0} }{1} \times  \dfrac{5y}{2{x}^{3} {z}^{3 - 1} }

\\  \\

\dashrightarrow \sf\dfrac{y^{3}}{1} \times  \dfrac{5y}{2{x}^{3} {z}^{2} }

\\  \\

\dashrightarrow \sf  \dfrac{5y \times  {y}^{3} }{2{x}^{3} {z}^{2} }

\\  \\

\dashrightarrow \sf  \dfrac{5y {}^{0}  \times  {y}^{3 + 1} }{2{x}^{3} {z}^{2} }

\\  \\

\dashrightarrow \sf  \dfrac{5 \times  {y}^{4} }{2{x}^{3} {z}^{2} }

\\  \\

\dashrightarrow \bf  \dfrac{5 {y}^{4} }{2{x}^{3} {z}^{2} }

\\  \\

\therefore \underline{ \textbf{ \textsf{option \red c \: is \: correct}}}

8 0
2 years ago
How to solve this trig
n200080 [17]

Hi there!

To find the Trigonometric Equation, we have to isolate sin, cos, tan, etc. We are also given the interval [0,2π).

<u>F</u><u>i</u><u>r</u><u>s</u><u>t</u><u> </u><u>Q</u><u>u</u><u>e</u><u>s</u><u>t</u><u>i</u><u>o</u><u>n</u>

What we have to do is to isolate cos first.

\displaystyle  \large{ cos \theta =  -  \frac{1}{2} }

Then find the reference angle. As we know cos(π/3) equals 1/2. Therefore π/3 is our reference angle.

Since we know that cos is negative in Q2 and Q3. We will be using π + (ref. angle) for Q3. and π - (ref. angle) for Q2.

<u>F</u><u>i</u><u>n</u><u>d</u><u> </u><u>Q</u><u>2</u>

\displaystyle \large{ \pi -  \frac{ \pi}{3}  =  \frac{3 \pi}{3}  -  \frac{  \pi}{3} } \\  \displaystyle \large \boxed{ \frac{2 \pi}{3} }

<u>F</u><u>i</u><u>n</u><u>d</u><u> </u><u>Q</u><u>3</u>

<u>\displaystyle \large{ \pi  +   \frac{ \pi}{3}  =  \frac{3 \pi}{3}   +   \frac{  \pi}{3} } \\  \displaystyle \large \boxed{ \frac{4 \pi}{3} }</u>

Both values are apart of the interval. Hence,

\displaystyle \large \boxed{ \theta =  \frac{2 \pi}{3} , \frac{4 \pi}{3} }

<u>S</u><u>e</u><u>c</u><u>o</u><u>n</u><u>d</u><u> </u><u>Q</u><u>u</u><u>e</u><u>s</u><u>t</u><u>i</u><u>o</u><u>n</u>

Isolate sin(4 theta).

\displaystyle \large{sin 4 \theta =  -  \frac{1}{ \sqrt{2} } }

Rationalize the denominator.

\displaystyle \large{sin4 \theta =  -  \frac{ \sqrt{2} }{2} }

The problem here is 4 beside theta. What we are going to do is to expand the interval.

\displaystyle \large{0 \leqslant  \theta < 2 \pi}

Multiply whole by 4.

\displaystyle \large{0 \times 4 \leqslant  \theta \times 4 < 2 \pi \times 4} \\  \displaystyle \large \boxed{0 \leqslant 4 \theta < 8 \pi}

Then find the reference angle.

We know that sin(π/4) = √2/2. Hence π/4 is our reference angle.

sin is negative in Q3 and Q4. We use π + (ref. angle) for Q3 and 2π - (ref. angle for Q4.)

<u>F</u><u>i</u><u>n</u><u>d</u><u> </u><u>Q</u><u>3</u>

<u>\displaystyle \large{ \pi +  \frac{ \pi}{4}  =  \frac{ 4 \pi}{4}  +  \frac{ \pi}{4} } \\  \displaystyle \large \boxed{  \frac{5 \pi}{4} }</u>

<u>F</u><u>i</u><u>n</u><u>d</u><u> </u><u>Q</u><u>4</u>

\displaystyle \large{2 \pi -  \frac{ \pi}{4}  =  \frac{8 \pi}{4}  -  \frac{ \pi}{4} } \\  \displaystyle \large \boxed{ \frac{7 \pi}{4} }

Both values are in [0,2π). However, we exceed our interval to < 8π.

We will be using these following:-

\displaystyle \large{ \theta + 2 \pi k =  \theta \:  \:  \:  \:  \:  \sf{(k  \:  \: is \:  \: integer)}}

Hence:-

<u>F</u><u>o</u><u>r</u><u> </u><u>Q</u><u>3</u>

\displaystyle \large{ \frac{5 \pi}{4}  + 2 \pi =  \frac{13 \pi}{4} } \\  \displaystyle \large{ \frac{5 \pi}{4}  + 4\pi =  \frac{21 \pi}{4} } \\  \displaystyle \large{ \frac{5 \pi}{4}  + 6\pi =  \frac{29 \pi}{4} }

We cannot use any further k-values (or k cannot be 4 or higher) because it'd be +8π and not in the interval.

<u>F</u><u>o</u><u>r</u><u> </u><u>Q</u><u>4</u>

\displaystyle \large{ \frac{ 7 \pi}{4}  + 2 \pi =  \frac{15 \pi}{4} } \\  \displaystyle \large{ \frac{ 7 \pi}{4}  + 4 \pi =  \frac{23\pi}{4} } \\  \displaystyle \large{ \frac{ 7 \pi}{4}  + 6 \pi =  \frac{31 \pi}{4} }

Therefore:-

\displaystyle \large{4 \theta =  \frac{5 \pi}{4} , \frac{7 \pi}{4} , \frac{13\pi}{4} , \frac{21\pi}{4} , \frac{29\pi}{4}, \frac{15 \pi}{4} , \frac{23\pi}{4} , \frac{31\pi}{4}  }

Then we divide all these values by 4.

\displaystyle \large \boxed{\theta =  \frac{5 \pi}{16} , \frac{7 \pi}{16} , \frac{13\pi}{16} , \frac{21\pi}{16} , \frac{29\pi}{16}, \frac{15 \pi}{16} , \frac{23\pi}{16} , \frac{31\pi}{16}  }

Let me know if you have any questions!

3 0
3 years ago
A plane travels 264 miles in 1.1 hours against the wind. On the return trip, it travels the same 264 miles in 1
bagirrra123 [75]

Answer:

The speed of the wind is 12 miles per hour.

Step-by-step explanation:

Given that the plane travels 264 miles in 1.1 hours with a headwind, the following calculation must be performed to determine its speed:

264 / 1.1 = X

240 = X

Thus, the speed of the plane into the headwind was 240 miles per hour. Now, on the return, with the wind in favor, the route is completed in exactly 1 hour.

Therefore the wind exerts a difference of 24 miles per hour between one trip and another, with which, if it remains stable, its speed is 12 miles per hour (24 / 2).

5 0
3 years ago
Other questions:
  • Factor the expression. 9b2 – 25
    6·2 answers
  • Find the square feet and the number of ceiling tiles for the following room sizes. 1. 17 x 23 2. 10 x 12 3. 70 x 100
    6·1 answer
  • A savings account is started with an initial deposit of $500. The account earns 1.5% interest compounded annually.
    7·1 answer
  • 3х – 10 y = 14 3х - 9y = 15​
    11·1 answer
  • Which value of p is a solution to this inequality: 10p - 8 2 12?
    10·1 answer
  • A is what percent of B?<br><br>d)<br><br>A = 8 oz, B = 1.5 lb <br>Plz help need by today
    7·1 answer
  • Dannon has $10.80 in dimes and quarters. If Dannon has 32 more quarters than dimes, how many dimes does he have?
    10·2 answers
  • Part A: The area of a square is (4x2 − 12x + 9) square units. Determine the length of each side of the square by factoring the a
    12·2 answers
  • HELP, Find x and the length of BD
    7·1 answer
  • Subtract x-3 from 3-x + 4​
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!