1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Anna11 [10]
3 years ago
13

Let f(x) = 3x + 8 and g(x) = x2 Find (f.g)(x).

Mathematics
1 answer:
puteri [66]3 years ago
8 0

Answer:

You just plug it in.

Step-by-step explanation:

You might be interested in
8x+6+4x+38=180 what’s the answer
Pavlova-9 [17]

x= 34 /3  thats what I got 34/3=11.333333


7 0
3 years ago
Read 2 more answers
The plane x + y + z = 12 intersects paraboloid z = x^2 + y^2 in an ellipse.(a) Find the highest and the lowest points on the ell
emmasim [6.3K]

Answer:

a)

Highest (-3,-3)

Lowest (2,2)

b)

Farthest (-3,-3)

Closest (2,2)

Step-by-step explanation:

To solve this problem we will be using Lagrange multipliers.

a)

Let us find out first the restriction, which is the projection of the intersection on the XY-plane.

From x+y+z=12 we get z=12-x-y and replace this in the equation of the paraboloid:

\bf 12-x-y=x^2+y^2\Rightarrow x^2+y^2+x+y=12

completing the squares:

\bf x^2+y^2+x+y=12\Rightarrow (x+1/2)^2-1/4+(y+1/2)^2-1/4=12\Rightarrow\\\\\Rightarrow (x+1/2)^2+(y+1/2)^2=12+1/2\Rightarrow (x+1/2)^2+(y+1/2)^2=25/2

and we want the maximum and minimum of the paraboloid when (x,y) varies on the circumference we just found. That is, we want the maximum and minimum of  

\bf f(x,y)=x^2+y^2

subject to the constraint

\bf g(x,y)=(x+1/2)^2+(y+1/2)^2-25/2=0

Now we have

\bf \nabla f=(\displaystyle\frac{\partial f}{\partial x},\displaystyle\frac{\partial f}{\partial y})=(2x,2y)\\\\\nabla g=(\displaystyle\frac{\partial g}{\partial x},\displaystyle\frac{\partial g}{\partial y})=(2x+1,2y+1)

Let \bf \lambda be the Lagrange multiplier.

The maximum and minimum must occur at points where

\bf \nabla f=\lambda\nabla g

that is,

\bf (2x,2y)=\lambda(2x+1,2y+1)\Rightarrow 2x=\lambda (2x+1)\;,2y=\lambda (2y+1)

we can assume (x,y)≠ (-1/2, -1/2) since that point is not in the restriction, so

\bf \lambda=\displaystyle\frac{2x}{(2x+1)} \;,\lambda=\displaystyle\frac{2y}{(2y+1)}\Rightarrow \displaystyle\frac{2x}{(2x+1)}=\displaystyle\frac{2y}{(2y+1)}\Rightarrow\\\\\Rightarrow 2x(2y+1)=2y(2x+1)\Rightarrow 4xy+2x=4xy+2y\Rightarrow\\\\\Rightarrow x=y

Replacing in the constraint

\bf (x+1/2)^2+(x+1/2)^2-25/2=0\Rightarrow (x+1/2)^2=25/4\Rightarrow\\\\\Rightarrow |x+1/2|=5/2

from this we get

<em>x=-1/2 + 5/2 = 2 or x = -1/2 - 5/2 = -3 </em>

<em> </em>

and the candidates for maximum and minimum are (2,2) and (-3,-3).

Replacing these values in f, we see that

f(-3,-3) = 9+9 = 18 is the maximum and

f(2,2) = 4+4 = 8 is the minimum

b)

Since the square of the distance from any given point (x,y) on the paraboloid to (0,0) is f(x,y) itself, the maximum and minimum of the distance are reached at the points we just found.

We have then,

(-3,-3) is the farthest from the origin

(2,2) is the closest to the origin.

3 0
3 years ago
Please please answer this correctly as soon as possible I have to finish the sums by
Helga [31]

There are 20 miles is Sheng from his home.

7 0
3 years ago
Read 2 more answers
If an object is rotated clockwise 130° around a center and then counterclockwise 75° around the same center, what is the angle b
Keith_Richards [23]
That would be 130 - 75  = 55 degrees answer
6 0
3 years ago
4. At a deli counter,
GuDViN [60]

Answer:

1.  Which meat is the least expensive per pound?  HAM

2.  Which meat is the most expensive per pound? ROAST BEEF

Step-by-step explanation:

I know this because when fractions look smaller people think it's actually a smaller portion but it's actually the bigger number.

HOPE THIS HELPED! <33 .

8 0
2 years ago
Read 2 more answers
Other questions:
  • The area is Arizona covered by desert is about 5880 square miles. If 42% of the total area is desert how many square miles is ar
    9·1 answer
  • Can you help me solve some math problems​
    10·1 answer
  • −7−(−6)
    8·1 answer
  • Can someone help me real quick
    5·1 answer
  • suppose the line segment whose endpoints are H(5,0) and I(-6,-3) is reflected over the y axis? what are the coordinates of H’I’?
    12·1 answer
  • Please please please please
    10·1 answer
  • So im doing triangles and all triangles equal 180 degrees but one corner = 32.1 another =95 the last one is ____? (remember it h
    13·1 answer
  • The diagram shows a triangle.<br><br> What is the value of b?
    10·1 answer
  • Find the radius and diameter of a circular puddle whose
    9·1 answer
  • Good morning how's everybody's Monday going so far
    11·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!