Answer:
20
Step-by-step explanation:
Total no = 75
N (P) = 48 , N (H) = 45 , N (T) = 58
N (P∩H) = 28 , N (H∩T) = 37 , N (P∩T) = 40
N (P∩H∩T) = 25
Total no = N (P) + N (H) + N (T) - N (P∩H) - N (H∩T) - N (P∩T) + N (P∩H∩T) + neither
75 = 48 + 45 + 58 - 28 - 37 - 40 + 25 + neither
75 = 71 + neither → neither = 4
N (only P) = N (P) - N (P∩H) - N (P∩T) + N (P∩H∩T) = 48 - 28 - 40 + 25 = 5
N (only H) = N (H) - N (P∩H) - N (H∩T) + N (P∩H∩T) = 45 - 28 - 37 + 25 = 5
N (only T) = N (T) - N (H∩T) - N (P∩T) + N (P∩H∩T) = 58 - 37 - 40 + 25 = 6
So, total liking either one or neither = 4 + 5 + 5 + 6 = 20
Answer:
12.57
Step-by-step explanation:
the formula for the area of a circle is 
the diameter is 2 times the radius, so dividing it by 2 gives you a radius of 2
substitute the 2 for the r in the formula and solve

4
≈12.57
Answer:
45
Step-by-step explanation:
Answer:
13.98 in²
Step-by-step explanation:
I don't understand it, either.
Point N is part of a "segment" that above and to the right of chord MO. It is the sum of the areas of 3/4 of the circle and a right triangle with 7-inch sides. The larger segment MO to the upper right of chord MO has an area of about 139.95 in², which <u>is not</u> an answer choice.
__
The remaining segment, to the lower left of chord MO does not seem to have anything to do with point N. However, its area is 13.98 in², which <u>is</u> an answer choice. Therefore, we think the question is about this segment, and we wonder why it is called MNO.
The area of a segment is given by the formula ...
A = (1/2)(θ -sin(θ))r² . . . . . . where θ is the central angle in radians.
Here, we have θ = π/2, r = 7 in, so we can compute the area of the smaller segment MO as ...
A = (1/2)(π/2 -sin(π/2))(7 in)² = 24.5(π/2 -1) in² ≈ 13.9845 in²
Rounded to hundredths, this is ...
≈ 13.98 in²
1.20 - .90 = .30
.30 / 5 = .06 (Same as 30 / 5)
The price of a pound of oranges went up by 6 cents per year.