1. Introduction. This paper discusses a special form of positive dependence.
Positive dependence may refer to two random variables that have
a positive covariance, but other definitions of positive dependence have
been proposed as well; see [24] for an overview. Random variables X =
(X1, . . . , Xd) are said to be associated if cov{f(X), g(X)} ≥ 0 for any
two non-decreasing functions f and g for which E|f(X)|, E|g(X)|, and
E|f(X)g(X)| all exist [13]. This notion has important applications in probability
theory and statistical physics; see, for example, [28, 29].
However, association may be difficult to verify in a specific context. The
celebrated FKG theorem, formulated by Fortuin, Kasteleyn, and Ginibre in
[14], introduces an alternative notion and establishes that X are associated if
∗
SF was supported in part by an NSERC Discovery Research Grant, KS by grant
#FA9550-12-1-0392 from the U.S. Air Force Office of Scientific Research (AFOSR) and
the Defense Advanced Research Projects Agency (DARPA), CU by the Austrian Science
Fund (FWF) Y 903-N35, and PZ by the European Union Seventh Framework Programme
PIOF-GA-2011-300975.
MSC 2010 subject classifications: Primary 60E15, 62H99; secondary 15B48
Keywords and phrases: Association, concentration graph, conditional Gaussian distribution,
faithfulness, graphical models, log-linear interactions, Markov property, positive
7y+5-8y+6
Group like terms
7y-8y+5+6
-y+11
or 11-y
f (x) = a(x - h)^2 + k, where (h, k) is the vertex of the parabola.
Do you see the h and k in your equation?
-h = -(-2) = 2
We see that k = -4.
Our vertex is (2, -4).
Answer:
850 people
Step-by-step explanation:
10,200 people in 12 rows
÷ 12 on both sides:
people in
rows
people in
row.