Answer:
y=-2/3x+3
Step-by-step explanation:
(m)slope :rise over run
(b)y-intercept :where the line crosses the y axis
slope intercept for y=mx+b
Answer:7
Step-by-step explanation:
To make a box and whisker plot, first you write down all of the numbers from least to greatest.
0, 1, 3, 4, 7, 8, 10
The median is 4, so that’s the middle line of the plot.
So now we have:
0, 1, 3, [4,] 7, 8, 10
So next we have to find the 1st and 3rd interquartiles..
0, [1,] 3, [4,] 7, [8,] 10
Those are the next 2 points you put on the plot.
Lastly, the upper and lower extremes. These are the highest and lowest numbers in the data.
[0,] 1, 3, 4, 7, 8, [10]
These are the final points on the plot.
To make the box of a box-and-whisker plot, you plot the 3 Medians of the data: 1, 4, and 8, and connect those to make a box that has a line in the middle at 4.
Next, you plot the upper and lower extremes: 0 and 10, by making “whiskers” that connect to the box. So you draw a line from the extremes to the box.
A quadrilateral is any figure with 4 sides, no matter what the lengths of
the sides or the sizes of the angles are ... just as long as it has four straight
sides that meet and close it up.
Once you start imposing some special requirements on the lengths of
the sides, or their relationship to each other, or the size of the angles,
you start making special kinds of quadrilaterals, that have special names.
The simplest requirement of all is that there must be one pair of sides that
are parallel to each other. That makes a quadrilateral called a 'trapezoid'.
That's why a quadrilateral is not always a trapezoid.
Here are some other, more strict requirements, that make other special
quadrilaterals:
-- Two pairs of parallel sides . . . . 'parallelogram'
-- Two pairs of parallel sides
AND all angles the same size . . . . 'rectangle'
(also a special kind of parallelogram)
-- Two pairs of parallel sides
AND all sides the same length . . . 'rhombus'
(also a special kind of parallelogram)
-- Two pairs of parallel sides
AND all sides the same length
AND all angles the same size . . . . 'square'.
(also a special kind of parallelogram, rectangle, and rhombus)
Answer:
12.6
Step-by-step explanation:
To find the area of a cylinder, you find the area of the circular base and multiply it by the height. Remember that the area of a circle is pi*r^2. R, the radius, is 2. Putting this into a calculator and rounding to the nearest tenth, you get 12.6. Now that we have the circle, we multiply by the height. Since the height is 1, we have our answer of 12.6.