Answer:
Volume of the frustum = ⅓πh(4R² - r²)
Step-by-step explanation:
We are to determine the volume of the frustum.
Find attached the diagram obtained from the given information.
Let height of small cone = h
height of the large cone = H
The height of a small cone is a quarter of the height of the large cone:
h = ¼×H
H = 4h
Volume of the frustum = volume of the large cone - volume of small cone
volume of the large cone = ⅓πR²H
= ⅓πR²(4h) = 4/3 ×π×R²h
volume of small cone = ⅓πr²h
Volume of the frustum = 4/3 ×π×R²h - ⅓πr²h
Volume of the frustum = ⅓(4π×R²h - πr²h)
Volume of the frustum = ⅓πh(4R² - r²)
D. f(x)=4 (5/2)^x
Are really good tool for graphing problems is Demos.com
Answer:
0.00627 :)
Step-by-step explanation:
quita los paréntesis: 4x-5=2+3(x-3) multiplica paréntesis X3, elimina el paréntesis: 4x-5=2+3x-9 calcule: 4x-5= -7+3x mueve los términos y te quedará así: 4x-3x-5=-7
agrupe los términos semejantes: x=-7+5
calcular la suma, y el resultado final sería: x= -2
Step-by-step explanation:
espero te sirva