I dont know for a fact but it could be 0.70710678118 but im not sure
We are tasked to solve the value of p(8a) in the expression p(x)=3x^2-4.
This means that what would find the value of the expression when x=8a. To solve this, we simply substitute the value of x in the expression.
p(x)=3x^2-4
p(8a)=3(8a)^2-4
p(8a)=3(64a^2)-4
p(8a)=192a^2-4
For this case we have that by definition, the equation of a line in the slope-intersection form is given by:

Where:
m: It's the slope
b: It is the cut-off point with the y axis
On the other hand we have that if two lines are perpendicular, then the product of their slopes is -1. So:

The given line is:

So we have:

We find 

So, a line perpendicular to the one given is of the form:

We substitute the given point to find "b":

Finally we have:

In point-slope form we have:

ANswer:

Step-by-step explanation:
1 Remove parentheses.
8{y}^{2}\times -3{x}^{2}{y}^{2}\times \frac{2}{3}x{y}^{4}
8y
2
×−3x
2
y
2
×
3
2
xy
4
2 Use this rule: \frac{a}{b} \times \frac{c}{d}=\frac{ac}{bd}
b
a
×
d
c
=
bd
ac
.
\frac{8{y}^{2}\times -3{x}^{2}{y}^{2}\times 2x{y}^{4}}{3}
3
8y
2
×−3x
2
y
2
×2xy
4
3 Take out the constants.
\frac{(8\times -3\times 2){y}^{2}{y}^{2}{y}^{4}{x}^{2}x}{3}
3
(8×−3×2)y
2
y
2
y
4
x
2
x
4 Simplify 8\times -38×−3 to -24−24.
\frac{(-24\times 2){y}^{2}{y}^{2}{y}^{4}{x}^{2}x}{3}
3
(−24×2)y
2
y
2
y
4
x
2
x
5 Simplify -24\times 2−24×2 to -48−48.
\frac{-48{y}^{2}{y}^{2}{y}^{4}{x}^{2}x}{3}
3
−48y
2
y
2
y
4
x
2
x
6 Use Product Rule: {x}^{a}{x}^{b}={x}^{a+b}x
a
x
b
=x
a+b
.
\frac{-48{y}^{2+2+4}{x}^{2+1}}{3}
3
−48y
2+2+4
x
2+1
7 Simplify 2+22+2 to 44.
\frac{-48{y}^{4+4}{x}^{2+1}}{3}
3
−48y
4+4
x
2+1
8 Simplify 4+44+4 to 88.
\frac{-48{y}^{8}{x}^{2+1}}{3}
3
−48y
8
x
2+1
9 Simplify 2+12+1 to 33.
\frac{-48{y}^{8}{x}^{3}}{3}
3
−48y
8
x
3
10 Move the negative sign to the left.
-\frac{48{y}^{8}{x}^{3}}{3}
−
3
48y
8
x
3
11 Simplify \frac{48{y}^{8}{x}^{3}}{3}
3
48y
8
x
3
to 16{y}^{8}{x}^{3}16y
8
x
3
.
-16{y}^{8}{x}^{3}
−16y
8
x
3
Done
8,500,000
Round the number 4 to 5 because the number 7 is behind it.