Answer:
(-3, 4)
General Formulas and Concepts:
<u>Pre-Algebra</u>
Order of Operations: BPEMDAS
- Brackets
- Parenthesis
- Exponents
- Multiplication
- Division
- Addition
- Subtraction
Equality Properties
- Multiplication Property of Equality
- Division Property of Equality
- Addition Property of Equality
- Subtract Property of Equality
<u>Algebra I</u>
- Terms/Coefficients
- Solving systems of equations using substitution/elimination
Step-by-step explanation:
<u>Step 1: Define Systems</u>
y = -x + 1
2x + 3y = 6
<u>Step 2: Solve for </u><em><u>x</u></em>
<em>Substitution</em>
- Substitute in <em>y</em>: 2x + 3(-x + 1) = 6
- Distribute 3: 2x - 3x + 3 = 6
- Combine like terms: -x + 3 = 6
- Isolate <em>x</em> terms: -x = 3
- Isolate <em>x</em>: x = -3
<u>Step 3: Solve for </u><em><u>y</u></em>
- Define equation: y = -x + 1
- Substitute in <em>x</em>: y = -(-3) + 1
- Simplify: y = 3 + 1
- Add: y = 4
Answer:
The answer is 030
Step-by-step explanation:
I am unable to transmit my working but don't forget to write the bearing as 030 not 30
[(14,7 + 5,9) x 5,8] / 2 = 59,74 cm^2
∑ Hey, KLPJDP615 ⊃
Answer:
x = 6 or x = -10
Step-by-step explanation:
<u><em>Given:</em></u>
<em>Solve for x.</em>
<em>1 + |2+x|= 9</em>
<em>O x = 4 or x = -8</em>
<em>O x = 7 or X = -11</em>
<em>O x = 5 or x = -9</em>
<em>x = 6 or X = -10 </em>
<u><em>Solve:</em></u>
<em>1 + |2+x|= 9</em>
<em>Subtract 1 from both sides:</em>
<em>1 + |2 +x| -1 = 9-1 </em>
<em>Simplify</em>
<em>|2 + x | = 8</em>
<em>Applying absolute value rule: If |u| = a, a > 0 then u = a or u = -a</em>
<em>2 + x = -8</em>
<em>2 + x = 8</em>
<u><em>Solving:</em></u>
<em>2 + x = -8</em>
<em>2 - 2 + x = -8 - 2</em>
<em>x = -10</em>
<u><em>Solving:</em></u>
<em>2 + x = 8</em>
<em>2 - 2 + x = 8 - 2</em>
<em>x = 6</em>
<em />
<em>Hence, x = 6 or x = -10</em>
<em />
<u><em>xcookiex12</em></u>
<em>8/26/2022</em>