Answer:
i think the answer is B but don't take my word for it
QUESTION 3
The sum of the interior angles of a kite is
.
.
.
.
.
But the two remaining opposite angles of the kite are congruent.

.
.
.
.
QUESTION 4
RH is the hypotenuse of the right triangle formed by the triangle with side lengths, RH,12, and 20.
Using the Pythagoras Theorem, we obtain;





QUESTION 5
The given figure is an isosceles trapezium.
The base angles of an isosceles trapezium are equal.
Therefore
QUESTION 6
The measure of angle Y and Z are supplementary angles.
The two angles form a pair of co-interior angles of the trapezium.
This implies that;



QUESTION 7
The sum of the interior angles of a kite is
.
.
.
.
.
But the two remaining opposite angles are congruent.

.
.
.
.
QUESTION 8
The diagonals of the kite meet at right angles.
The length of BC can also be found using Pythagoras Theorem;




QUESTION 9.
The sum of the interior angles of a trapezium is
.
.
.
But the measure of angle M and K are congruent.
.
.
.
.
Step-by-step explanation:
<u>Proof:</u>
<em>2</em><em> </em><em>(</em><em> </em><em>x </em><em>-</em><em> </em><em>9</em><em>)</em><em> </em><em>=</em><em> </em><em>-</em><em> </em><em>1</em><em>0</em><em> </em><em> </em><em>when </em><em>x </em><em>=</em><em> </em><em>4</em>
<em>2</em><em> </em><em>(</em><em> </em><em>4</em><em> </em><em>-</em><em> </em><em>9</em><em>)</em><em> </em><em>=</em><em> </em><em>-</em><em>1</em><em>0</em>
<em>8</em><em> </em><em>-</em><em> </em><em>1</em><em>8</em><em> </em><em>=</em><em> </em><em>-</em><em>1</em><em>0</em>
<em><u>-</u></em><em><u>1</u></em><em><u>0</u></em><em><u> </u></em><em><u>=</u></em><em><u> </u></em><em><u> </u></em><em><u>-</u></em><em><u>1</u></em><em><u>0</u></em><em><u> </u></em>..........hence proven
<u>Reasons </u>
- When you replace X with 4, you can clearly see that the equation is equal to -10.
sorry I couldn't answer accurately, but I hope this helps
Answer: (a) e ^ -3x (b)e^-3x
Step-by-step explanation:
I suggest the equation is:
d/dx[integral (e^-3t) dt
First we integrate e^-3tdt
Integral(e ^ -3t dt) as shown in attachment and then we differentiate the result as shown in the attachment.
(b) to differentiate the integral let x = t, and substitute into the expression.
Therefore dx = dt
Hence, d/dx[integral (e ^-3x dx)] = e^-3x