Answer:

Step-by-step explanation:
Answer:

option B is correct
Step-by-step explanation:
We have 5 spaces in the license plate:
_ _ _ _ _
we have 26 available letters, and 10 available numbers.
starting with letters:
- how many choices do i have to place the 1st letter? 26.
26 _ _ _ _
- how many choices do i have to place the 2nd letter? 26 (since we're allowed to repeat letters)
26 26 _ _ _
- how many choices do i have to place the 3rd letter? 26
26 26 26 _ _
we've used all the places for letters, (note: the exact position of the letters doesn't matter here, the first letter could've been placed anywhere in _ _ _ _ _, but the amount of possible choices for letters would always be 26).
let's move on to numbers.
- how many choices do i have to place the 1st number? 10
26 26 26 10 _
- how many choices do i have to place the 2nd number? 10
26 26 26 10 10
we've completed our number plate. Next we'll simply multiply all these numbers to get all the possible arrangements in which numbers and letters can be displayed on a license place.

option B is correct
Answer: Right Angle
Step-by-step explanation:
And Since The Angles Of a Trangle Add Up To 180° When You Substract 90 From It You Remain With Another 90° Which Means The Angle Is Non Other Than a right angle traingle
60° + 30° = 90°
180° - 90° = 90°
∴ 90° = Right Angle Traingle
a. Use the mean value theorem. 16 falls between 12 and 20, so

(Don't forget your units - 5 m/min^2)
b.
gives the Johanna's velocity at time
. The magnitude of her velocity, or speed, is
. Integrating this would tell us the total distance she has traveled whilst jogging.
The Riemann sum approximates the integral as

If you're not sure how this is derived: we're given 5 sample points, so we can cut the interval [0, 40] into 4 subintervals. The lengths of each subinterval are 12, 8, 4, and 16 (the distances between each sample point), and the height of the rectangle approximating the area under the plot of
is determined by the value of
at each sample point, 200, 240, |-220| = 220, and 150.
c. Bob's velocity is given by
, so his acceleration is given by
. We have

and at
his acceleration is
m/min^2.
d. Bob's average velocity over [0, 10] is given by the difference quotient,
m/min