Answer:
AY = 16
IY = 9
FG = 30
PA = 24
Step-by-step explanation:
<em>The </em><em>centroid </em><em>of the triangle </em><em>divides each median</em><em> at the ratio </em><em>1: 2</em><em> from </em><em>the base</em>
Let us solve the problem
In Δ AFT
∵ Y is the centroid
∵ AP, TI, and FG are medians
→ By using the rule above
∴ Y divides AP at ratio 1: 2 from the base FT
∴ AY = 2 YP
∵ YP = 8
∴ AY = 2(8)
∴ AY = 16
∵ PA = AY + YP
∴ AP = 16 + 8
∴ AP = 24
∵ Y divides TI at ratio 1: 2 from the base FA
∴ TY = 2 IY
∵ TY = 18
∴ 18 = 2
→ Divide both sides by 2
∴ 9 = IY
∴ IY = 9
∵ Y divides FG at ratio 1:2 from the base AT
∴ FY = 2 YG
∵ FY = 20
∴ 20 = 2 YG
→ Divide both sides by 2
∴ 10 = YG
∴ YG = 10
∵ FG = YG + FY
∴ FG = 10 + 20
∴ FG = 30
Answer:
q = 20
Step-by-step explanation:
1/5q = 4
q = 20
Answer:
w - 3.3 + -3.3 = 5.6 - 3.3
w = 2.3
Answer:
Therefore a= 90°,b=54°, x=54°, y= 162°
Step-by-step explanation:
a=90°
a:b=5:3
5+3= 8
5/8 x A = 90
A is the sum of the angles of a and b divided in the ratio 5:3
5A/8 = 90
cross multiply
5A= 90 X8 = 720
5A=720
A= 720/5= 144°
b= 3/8 x 144 = 3x144/8 = 432/8 = 54
a= 90
b= 54
x:y is in the ratio of 1:3
the Sum of angles in a Quadrilateral is 360°
if the sum of a and b is 144°
then the reamining angles is 360-144= 216°
then x:y=1:3
1+3=4
x= 1/4 x 216= 54°
y= 3/4 x 216= 162°
Therefore a= 90°,b=54°, x=54°, y= 162°
we can see that b = x = 54°