<span>A.
The surface area of A is greater than the surface area of B.</span>
Answer:
1. 4
Step-by-step explanation:
For question 1, you need to know the ratio between the recipe and the amount in question.
So if in the recipe, it says it uses 3/4 cup of diced ham, and the question uses 1 cup of diced ham, you can divide 1 by 3/4 to get 4/3. This is how many times bigger the amount used in the question than the recipe.
Then it asks for how many cups of potatoes, to do this, you look at the recipe and how many potatoes it uses: 3.5 cups
To solve it then, you just do 3.5 x 4/3 to get 4
cups of potatoes
There's your answer.
Answers:
- (a) Independent
- (b) Dependent
- (c) Dependent
- (d) Independent
========================================================
Explanation:
If events A and B are independent, then the two following equations must both be true
- P(A | B) = P(A)
- P(B | A) = P(B)
This is because the conditional probability P(A|B) means "P(A) when B has happened". If B were to happen, then P(A) must be the same as before. In other words, event B does not affect A, and vice versa.
For part (a), we have P(B) = 1/4 and P(B|A) = 1/4 showing that P(B|A) = P(B) is true, and therefore we can say the events are independent. We don't need the info that P(A) = 1/8.
------------------------
Unlike part (a), part (b) has the answer "dependent" because P(A) = 1/8 and P(A | B) = 1/3 differ in value. Event A starts off at probability 1/8, but then event B occurring means P(A) gets increased to 1/3. The prior knowledge about B changes the chances of A. The P(B) = 1/5 is unneeded.
------------------------
If A and B were independent, then,
P(A and B) = P(A)*P(B)
However,
P(A)*P(B) = (1/4)*(1/5) = 1/20
which is not the same as P(A and B) = 1/6. Therefore the two events are dependent.
------------------------
Refer back to part (a)
P(A) = 1/4 and P(A|B) = 1/4 are identical in value, so P(A|B) = P(A) which leads to the events being independent. Whether we know event B happened or not, it does not affect the outcome of event A. P(B) = 1/9 is unneeded.
Using the binomial distribution, it is found that there is a:
a) 0.9298 = 92.98% probability that at least 8 of them passed.
b) 0.0001 = 0.01% probability that fewer than 5 passed.
For each student, there are only two possible outcomes, either they passed, or they did not pass. The probability of a student passing is independent of any other student, hence, the binomial distribution is used to solve this question.
<h3>What is the binomial probability distribution formula?</h3>
The formula is:


The parameters are:
- x is the number of successes.
- n is the number of trials.
- p is the probability of a success on a single trial.
In this problem:
- 90% of the students passed, hence
.
- The professor randomly selected 10 exams, hence
.
Item a:
The probability is:

In which:




Then:

0.9298 = 92.98% probability that at least 8 of them passed.
Item b:
The probability is:

Using the binomial formula, as in item a, to find each probability, then adding them, it is found that:

Hence:
0.0001 = 0.01% probability that fewer than 5 passed.
You can learn more about the the binomial distribution at brainly.com/question/24863377
Answer:
C.
Step-by-step explanation:
Location 1 is 20 feet ABOVE the sea level while Location 2 is 50 feet BELOW the sea level.
Location 1 would be 20
Location 2 would be -50
And think of the greater than and lesser than symbol as a alligators mouth it would go towards the bigger number so, -50 < 20, Location 1 is higher, is the answer.