A point (a, b) in the second Quadrant, is any point where a is negative and b is positive.
For example (-3, 5), (-189, 14) etc are all points in the 2.Quadrant
Rotating a point P(x, y) in the second Quadrant 180° counterclockwise, means rotating 180° counterclockwise about the origin, which maps point P to P'(-a, -b) in the fourth Quadrant.
See explanation below.
Explanation:
The 'difference between roots and factors of an equation' is not a straightforward question. Let's define both to establish the link between the two..
Assume we have some function of a single variable
x
;
we'll call this
f
(
x
)
Then we can form an equation:
f
(
x
)
=
0
Then the "roots" of this equation are all the values of
x
that satisfy that equation. Remember that these values may be real and/or imaginary.
Now, up to this point we have not assumed anything about
f
x
)
. To consider factors, we now need to assume that
f
(
x
)
=
g
(
x
)
⋅
h
(
x
)
.
That is that
f
(
x
)
factorises into some functions
g
(
x
)
×
h
(
x
)
If we recall our equation:
f
(
x
)
=
0
Then we can now say that either
g
(
x
)
=
0
or
h
(
x
)
=
0
.. and thus show the link between the roots and factors of an equation.
[NB: A simple example of these general principles would be where
f
(
x
)
is a quadratic function that factorises into two linear factors.
Answer:
x = 5 , y = 15
Step-by-step explanation:
You can solve this using substitution.
Let the quantity of cheese wafers be denoted by x and the quantity of chocolate wafers denoted by y
2x + 1y = 25
x + y = 20
These two equations are the answer to part A, (remember to include the above prompt which says what x and y denote).
For part B I used substitution because it was more applicable to the question then addition or elimination.
ACTUAL WORK
Set 2x + 1y = 25 equal to x
x = 25 - y / 2
Replace x with y in the second equation
(25 - y / 2) + y = 20
And solve for y
y = 15
Since we know what y is we can replace y in the second equation and find what x is
x + 15 = 20
Solve for x
x = 5
H + 732 = -194
* combine like terms
H = -194 - 732
H = -926