1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Alex Ar [27]
3 years ago
8

Find

y}{dx} " align="absmiddle" class="latex-formula">
if
y = (x +  \sqrt{x} )^{2}
​
Mathematics
1 answer:
nataly862011 [7]3 years ago
4 0

Answer:

\displaystyle y' = 2x + 3\sqrt{x} + 1

General Formulas and Concepts:

<u>Pre-Algebra</u>

Order of Operations: BPEMDAS

  1. Brackets
  2. Parenthesis
  3. Exponents
  4. Multiplication
  5. Division
  6. Addition
  7. Subtraction
  • Left to Right<u> </u>

<u>Algebra I</u>

  • Terms/Coefficients
  • Anything to the 0th power is 1
  • Exponential Rule [Rewrite]:                                                                              \displaystyle b^{-m} = \frac{1}{b^m}
  • Exponential Rule [Root Rewrite]:                                                                     \displaystyle \sqrt[n]{x} = x^{\frac{1}{n}}<u> </u>

<u>Calculus</u>

Derivatives

Derivative Notation

Basic Power Rule:

  • f(x) = cxⁿ
  • f’(x) = c·nxⁿ⁻¹

Derivative Rule [Chain Rule]:                                                                                    \displaystyle \frac{d}{dx}[f(g(x))] =f'(g(x)) \cdot g'(x)

Step-by-step explanation:

<u>Step 1: Define</u>

<em>Identify</em>

<em />\displaystyle y = (x + \sqrt{x})^2<em />

<em />

<u>Step 2: Differentiate</u>

  1. Chain Rule:                                                                                                        \displaystyle y' = 2(x + \sqrt{x})^{2 - 1} \cdot \frac{d}{dx}[x + \sqrt{x}]
  2. Rewrite [Exponential Rule - Root Rewrite]:                                                     \displaystyle y' = 2(x + x^{\frac{1}{2}})^{2 - 1} \cdot \frac{d}{dx}[x + x^{\frac{1}{2}}]
  3. Simplify:                                                                                                             \displaystyle y' = 2(x + x^{\frac{1}{2}}) \cdot \frac{d}{dx}[x + x^{\frac{1}{2}}]
  4. Basic Power Rule:                                                                                             \displaystyle y' = 2(x + x^{\frac{1}{2}}) \cdot (1 \cdot x^{1 - 1} + \frac{1}{2}x^{\frac{1}{2} - 1})
  5. Simplify:                                                                                                             \displaystyle y' = 2(x + x^{\frac{1}{2}}) \cdot (1 + \frac{1}{2}x^{-\frac{1}{2}})
  6. Rewrite [Exponential Rule - Rewrite]:                                                              \displaystyle y' = 2(x + x^{\frac{1}{2}}) \cdot (1 + \frac{1}{2x^{\frac{1}{2}}})
  7. Multiply:                                                                                                             \displaystyle y' = 2[(x + x^{\frac{1}{2}}) + \frac{x + x^{\frac{1}{2}}}{2x^{\frac{1}{2}}}]
  8. [Brackets] Add:                                                                                                 \displaystyle y' = 2(\frac{2x + 3x^{\frac{1}{2}} + 1}{2})
  9. Multiply:                                                                                                             \displaystyle y' = 2x + 3x^{\frac{1}{2}} + 1
  10. Rewrite [Exponential Rule - Root Rewrite]:                                                     \displaystyle y' = 2x + 3\sqrt{x} + 1

Topic: AP Calculus AB/BC (Calculus I/II)

Unit: Derivatives

Book: College Calculus 10e

You might be interested in
Using substitution, which value of x makes this equation true?<br><br> 3+x = 10
Firdavs [7]

Answer:

7

Step-by-step explanation:

3 0
3 years ago
Read 2 more answers
slader How many partitions of the set {1, 2, 3, . . . , 100} are there such that there are exactly three parts and elements 1, 2
My name is Ann [436]

Answer:

3^{97} partitions.

Step-by-step explanation:

As we know if we have x number of elements we can arrange them in x! ways.

here we have 100 elements so we can arrange them in 100! ways.

Now if we have exactly three parts and 1,2 and 3 are in different parts then let consider 1 goes to part 1, 2 goes to part 2, and 3 goes to part 3. For the remaining 97 elements,  we have three options for each element, thus we can arrange the remaining 97 elements in 3^{97} ways/partitions.

each of these partition will contain only three elements.

7 0
4 years ago
A car dealership has 55 cars and 11 vans. What is the ratio of cars to vans?
JulijaS [17]
It is 55:11. What number can both those numbers divide by? 11.
55/11=5
11/11=1

So the answer is 5:1.
6 0
3 years ago
Read 2 more answers
What is the distance between points (3.3) and Wc-2, -3)<br> Round to the nearest tenth if necessary.
Ivahew [28]

Answer:

7.81 u

Step-by-step explanation:

<u>Given :- </u>

  • Two points (3,3) and (-2,-3) is given to us.

And we need to find out the distance between the two points . So , here we can use the distance formula to find out the distance. As,

:\implies D = √{(x2-x1)² + (y2-y1)²}

:\implies D =√[ (3+2)² +(-3-3)²]

:\implies D =√[ 5² +6²]

:\implies D =√[ 25 +36]

:\implies D = 61

:\implies D = 7.81

<h3>Hence the distance between the two points is 7.81 units .</h3>
8 0
3 years ago
I need help plz plz plz plz
goblinko [34]

Answer:

1. n-5....... 2.v+3 and v- 2

8 0
3 years ago
Other questions:
  • Tyler made 9 1/2 cups of lemonade. He offers 3/4-cup servings of lemonade to some relatives at a family pinic. What is the GREAT
    10·2 answers
  • 5/6 + (-3/4) please help me out quick thank you
    12·1 answer
  • Which is bigger 0.6 or 2/3
    9·2 answers
  • PLEASE HELP!!
    5·1 answer
  • Type the correct answer in each box. Use numerals instead of words. If necessary, use / for the fraction bar(s). John is five ye
    14·1 answer
  • find the vertex of y= 4x^2+5x+-6 please find the value of x and value of y and round to the nearest hundredth
    11·2 answers
  • A line going through the points (30,45) and (60,30)​
    11·1 answer
  • Help please will mark brainliest ( I clicked be so it might not be right)
    5·1 answer
  • Can someone help me please
    9·1 answer
  • los lados menores de un triángulo rectángulo miden 90 m y 120 m respectivamente el valor del lado mayor es​
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!