1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Alex Ar [27]
3 years ago
8

Find

y}{dx} " align="absmiddle" class="latex-formula">
if
y = (x +  \sqrt{x} )^{2}
​
Mathematics
1 answer:
nataly862011 [7]3 years ago
4 0

Answer:

\displaystyle y' = 2x + 3\sqrt{x} + 1

General Formulas and Concepts:

<u>Pre-Algebra</u>

Order of Operations: BPEMDAS

  1. Brackets
  2. Parenthesis
  3. Exponents
  4. Multiplication
  5. Division
  6. Addition
  7. Subtraction
  • Left to Right<u> </u>

<u>Algebra I</u>

  • Terms/Coefficients
  • Anything to the 0th power is 1
  • Exponential Rule [Rewrite]:                                                                              \displaystyle b^{-m} = \frac{1}{b^m}
  • Exponential Rule [Root Rewrite]:                                                                     \displaystyle \sqrt[n]{x} = x^{\frac{1}{n}}<u> </u>

<u>Calculus</u>

Derivatives

Derivative Notation

Basic Power Rule:

  • f(x) = cxⁿ
  • f’(x) = c·nxⁿ⁻¹

Derivative Rule [Chain Rule]:                                                                                    \displaystyle \frac{d}{dx}[f(g(x))] =f'(g(x)) \cdot g'(x)

Step-by-step explanation:

<u>Step 1: Define</u>

<em>Identify</em>

<em />\displaystyle y = (x + \sqrt{x})^2<em />

<em />

<u>Step 2: Differentiate</u>

  1. Chain Rule:                                                                                                        \displaystyle y' = 2(x + \sqrt{x})^{2 - 1} \cdot \frac{d}{dx}[x + \sqrt{x}]
  2. Rewrite [Exponential Rule - Root Rewrite]:                                                     \displaystyle y' = 2(x + x^{\frac{1}{2}})^{2 - 1} \cdot \frac{d}{dx}[x + x^{\frac{1}{2}}]
  3. Simplify:                                                                                                             \displaystyle y' = 2(x + x^{\frac{1}{2}}) \cdot \frac{d}{dx}[x + x^{\frac{1}{2}}]
  4. Basic Power Rule:                                                                                             \displaystyle y' = 2(x + x^{\frac{1}{2}}) \cdot (1 \cdot x^{1 - 1} + \frac{1}{2}x^{\frac{1}{2} - 1})
  5. Simplify:                                                                                                             \displaystyle y' = 2(x + x^{\frac{1}{2}}) \cdot (1 + \frac{1}{2}x^{-\frac{1}{2}})
  6. Rewrite [Exponential Rule - Rewrite]:                                                              \displaystyle y' = 2(x + x^{\frac{1}{2}}) \cdot (1 + \frac{1}{2x^{\frac{1}{2}}})
  7. Multiply:                                                                                                             \displaystyle y' = 2[(x + x^{\frac{1}{2}}) + \frac{x + x^{\frac{1}{2}}}{2x^{\frac{1}{2}}}]
  8. [Brackets] Add:                                                                                                 \displaystyle y' = 2(\frac{2x + 3x^{\frac{1}{2}} + 1}{2})
  9. Multiply:                                                                                                             \displaystyle y' = 2x + 3x^{\frac{1}{2}} + 1
  10. Rewrite [Exponential Rule - Root Rewrite]:                                                     \displaystyle y' = 2x + 3\sqrt{x} + 1

Topic: AP Calculus AB/BC (Calculus I/II)

Unit: Derivatives

Book: College Calculus 10e

You might be interested in
What is the answer for 2,4,6.....please show work and need answer asap.....thank you
sashaice [31]
You've been working with rectangular prisms all night, and the same formula gives the volume of every one of them.  Unfortunately, you used way more time asking other people for answers than it would take you to solve them on your own.

The formula is:

             Volume  =  (length)  times  (width)  times  (height) .

With that formula, you can directly solve problems #1, #2, #3,
#4, and #8.  It's also the only math you really need to solve #9 ...
but you also need to use your brain cells for #9.


For #6, start with the same formula:

                                     Volume = (length) x (width) x (height)

Divide each side by
(width) x (height), and
then it says:               Length = (volume) / (width x height) .

#6 gives you the volume, width and height. 
 You can just write them into this equation,
and bada-bing, you'll have the missing length.
5 0
3 years ago
Given below are a collection of scores on a spelling test: 5,6,10,8,3,5,9,8,7,4,6,5,3,7,9,5,6,4,5,6,7,5,4,6 a.) construct a freq
horsena [70]
Compute relative frequencies
6 0
3 years ago
two vertical poles stand side by side. one post is 8ft tall while the other is 17ft tall. if a 24ft wire is stretched between th
Anna35 [415]

Answer:

It's a right triangle.

Step-by-step explanation:

The hypotenuse is 24 feet

The vertical side is 17 - 8 = 9 feet.

The distance is the 3rd side.

6 0
3 years ago
The sea turtle habitat at the zoo is made by connecting two large aquariums. The first aquarium is 6 m6\text { m}6 m6, space, m
atroni [7]

Answer:

264 cubic meters

Step-by-step explanation:

4 0
3 years ago
Need help asap please!
RUDIKE [14]

Answer:

\textsf{$f(1) = \boxed{1}$ , meaning when a $\boxed{1}$ is rolled on the die, the player is awarded}\\\\ \textsf{ $\boxed{1}$ point.  This interpretation $\boxed{\sf makes \; sense}$ in the context of the problem.}

\textsf{$f(4.5) = \boxed{8}$ , meaning when a $\boxed{4.5}$ is rolled on the die, the player is awarded} \\\\ \textsf{ $\boxed{8}$ points.  This interpretation $\boxed{\sf does \; not \; make \; sense}$ in the context of the problem.}

\textsf{$f(10) = \boxed{19}$ , meaning when a $\boxed{10}$ is rolled on the die, the player is awarded} \\\\ \textsf{ $\boxed{19}$ points.  This interpretation $\boxed{\sf does \; not \; make \; sense}$ in the context of the problem.}

\textsf{Based on the observations above, it is clear that an appropriate domain for the}\\\\ \textsf{function is $\boxed{ \{1, 2, 3, 4, 5, 6\}}$ .}

Step-by-step explanation:

<u>Given function</u>:

f(x)=2x-1

where:

  • x is the value rolled on the six-sided die.
  • The sides of the die are labelled 1 to 6.

----------------------------------------------------------------------------------------------------

f(1) means the value of the function when x = 1.  

Therefore, substitute x = 1 into the given function to find f(1):

\begin{aligned}x=1 \implies f(1)&=2(1)-1\\&=2-1\\&=1\end{aligned}

\textsf{$f(1) = \boxed{1}$ , meaning when a $\boxed{1}$ is rolled on the die, the player is awarded}\\\\ \textsf{ $\boxed{1}$ point.  This interpretation $\boxed{\sf makes \; sense}$ in the context of the problem.}

----------------------------------------------------------------------------------------------------

f(4.5) means the value of the function when x = 4.5.

Therefore, substitute x = 4.5 into the given function to find f(4.5):

\begin{aligned}x=4.5 \implies f(4.5)&=2(4.5)-1\\&=9-1\\&=8\end{aligned}

As the faces of the six-sided die are labelled 1 to 6, the only values of x that make sense are 1, 2, 3, 4, 5 and 6.  Therefore, rolling a "4.5" does not make sense.

\textsf{$f(4.5) = \boxed{8}$ , meaning when a $\boxed{4.5}$ is rolled on the die, the player is awarded} \\\\ \textsf{ $\boxed{8}$ points.  This interpretation $\boxed{\sf does \; not \; make \; sense}$ in the context of the problem.}

----------------------------------------------------------------------------------------------------

f(10) means the value of the function when x = 10.

Therefore, substitute x = 10 into the given function to find f(10):

\begin{aligned}x=10 \implies f(1)&=2(10)-1\\&=20-1\\&=19\end{aligned}

As the faces of the six-sided die are labelled 1 to 6, the only values of x that make sense are 1, 2, 3, 4, 5 and 6.  Therefore, rolling a "10" does not make sense.

\textsf{$f(10) = \boxed{19}$ , meaning when a $\boxed{10}$ is rolled on the die, the player is awarded} \\\\ \textsf{ $\boxed{19}$ points.  This interpretation $\boxed{\sf does \; not \; make \; sense}$ in the context of the problem.}

----------------------------------------------------------------------------------------------------

The domain of a function is the set of all possible x-values.

As the faces of the six-sided die are labelled 1 to 6, the only possible values of x are 1, 2, 3, 4, 5 and 6.  

\textsf{Based on the observations above, it is clear that an appropriate domain for the}\\\\ \textsf{function is $\boxed{ \{1, 2, 3, 4, 5, 6\}}$ .}

The domain can also be written as:

\{x \in \mathbb{N} \; | \; 1 \leq x \leq 6 \}  

or \{x \in \mathbb{Z} \; | \; 1 \leq x \leq 6 \}

8 0
1 year ago
Other questions:
  • 2. Olivia bowled 5 games. Her scores were 80, 95, 100, 85, and 95. What is the mean of her scores for the 5 games? * A. 20 B. 72
    7·1 answer
  • Solve for x<br> 6.58-8.36x=3.98x-27.33<br> Round to nearest hundred
    12·2 answers
  • Suppose the volume of milk in a glass is 230 cubic cm. If 1 gallon of milk equals 3.79 liters, how many glasses of milk are in 1
    5·1 answer
  • Which is the least number which is divided by 6,9,12 and leaves remainder 4 in each case.​
    12·1 answer
  • <img src="https://tex.z-dn.net/?f=x%20%3D%207%20%20%5C%5C%20y%20%3D%204%20%5C%5C%20%20%5C%5C%2028%20%2B%2043%20%2B%20xy%20%2B%20
    5·2 answers
  • You just found a positive trend line showing a strong relationship between homework scores and test scores for five students. Ex
    8·2 answers
  • WHERE WOULD THESE GOOO?
    13·1 answer
  • WILL GIVE BRAINLIST NO LINKS Ursula has 3 line segments that are the same size. What kind of triangle can she make?
    10·1 answer
  • Jack bought a house for $215,00 in 2013. Since
    10·1 answer
  • Solve 3^x−5 = 9. (the x-5 is an exponent to the 3)
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!