1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Alex Ar [27]
3 years ago
8

Find

y}{dx} " align="absmiddle" class="latex-formula">
if
y = (x +  \sqrt{x} )^{2}
​
Mathematics
1 answer:
nataly862011 [7]3 years ago
4 0

Answer:

\displaystyle y' = 2x + 3\sqrt{x} + 1

General Formulas and Concepts:

<u>Pre-Algebra</u>

Order of Operations: BPEMDAS

  1. Brackets
  2. Parenthesis
  3. Exponents
  4. Multiplication
  5. Division
  6. Addition
  7. Subtraction
  • Left to Right<u> </u>

<u>Algebra I</u>

  • Terms/Coefficients
  • Anything to the 0th power is 1
  • Exponential Rule [Rewrite]:                                                                              \displaystyle b^{-m} = \frac{1}{b^m}
  • Exponential Rule [Root Rewrite]:                                                                     \displaystyle \sqrt[n]{x} = x^{\frac{1}{n}}<u> </u>

<u>Calculus</u>

Derivatives

Derivative Notation

Basic Power Rule:

  • f(x) = cxⁿ
  • f’(x) = c·nxⁿ⁻¹

Derivative Rule [Chain Rule]:                                                                                    \displaystyle \frac{d}{dx}[f(g(x))] =f'(g(x)) \cdot g'(x)

Step-by-step explanation:

<u>Step 1: Define</u>

<em>Identify</em>

<em />\displaystyle y = (x + \sqrt{x})^2<em />

<em />

<u>Step 2: Differentiate</u>

  1. Chain Rule:                                                                                                        \displaystyle y' = 2(x + \sqrt{x})^{2 - 1} \cdot \frac{d}{dx}[x + \sqrt{x}]
  2. Rewrite [Exponential Rule - Root Rewrite]:                                                     \displaystyle y' = 2(x + x^{\frac{1}{2}})^{2 - 1} \cdot \frac{d}{dx}[x + x^{\frac{1}{2}}]
  3. Simplify:                                                                                                             \displaystyle y' = 2(x + x^{\frac{1}{2}}) \cdot \frac{d}{dx}[x + x^{\frac{1}{2}}]
  4. Basic Power Rule:                                                                                             \displaystyle y' = 2(x + x^{\frac{1}{2}}) \cdot (1 \cdot x^{1 - 1} + \frac{1}{2}x^{\frac{1}{2} - 1})
  5. Simplify:                                                                                                             \displaystyle y' = 2(x + x^{\frac{1}{2}}) \cdot (1 + \frac{1}{2}x^{-\frac{1}{2}})
  6. Rewrite [Exponential Rule - Rewrite]:                                                              \displaystyle y' = 2(x + x^{\frac{1}{2}}) \cdot (1 + \frac{1}{2x^{\frac{1}{2}}})
  7. Multiply:                                                                                                             \displaystyle y' = 2[(x + x^{\frac{1}{2}}) + \frac{x + x^{\frac{1}{2}}}{2x^{\frac{1}{2}}}]
  8. [Brackets] Add:                                                                                                 \displaystyle y' = 2(\frac{2x + 3x^{\frac{1}{2}} + 1}{2})
  9. Multiply:                                                                                                             \displaystyle y' = 2x + 3x^{\frac{1}{2}} + 1
  10. Rewrite [Exponential Rule - Root Rewrite]:                                                     \displaystyle y' = 2x + 3\sqrt{x} + 1

Topic: AP Calculus AB/BC (Calculus I/II)

Unit: Derivatives

Book: College Calculus 10e

You might be interested in
Find the oth term of the geometric sequence 9, -18, 36, ...
Sphinxa [80]

Answer:

2304

Step-by-step explanation:

<u>Given :- </u>

  • A geometric sequence is given to us which is 9 , -18 , 36.

And we need to find out the 9th term of the sequence. Here firstly we should find the Common Ratio and then we can substitute the respective values in the formula to find the nth term of a geometric sequence .

<u>Common Ratio :- </u>

:\implies CR = -18÷ 9 = -2

<u>The </u><u>9</u><u> th term :- </u>

:\implies T_n = arⁿ - ¹

:\implies T_9 = 9× (-2) ⁹ - ¹

:\implies T_9 = 9 × (-2)⁸

:\implies T_9 = 9 × 256

:\implies T_9 = 2304

<u>Hence the 10th term is </u><u>2</u><u>3</u><u>0</u><u>4</u><u>.</u>

3 0
3 years ago
Please help:(( no links please!!
Usimov [2.4K]

Answer:

A :

B : Trapezius!

............

6 0
3 years ago
Question ^^<br><br><br> Give the answer with the appropriate unit of measure.
borishaifa [10]

Answer:

-11

Step-by-step explanation:

-1-10=-11

If by difference, the question means subtraction, then the answer is -11. If they mean the distance between, then the answer is 9

3 0
3 years ago
What is 69.37 minus 1.93
Jlenok [28]

Answer:

the answer is 67.44 hope it helps smile

5 0
3 years ago
What are the midline, amplitude, and period of the graphed sine function?
Sunny_sXe [5.5K]

The midline, amplitude and period respectively of the given sine graph are; x = 1; 2; π

<h3>Midline, Amplitude and Period</h3>

The midline of this trigonometric graph is defined as the horizontal line that divides the maximum and minimum point distance into two equal parts. In this case, the midline is x = 1

The amplitude of a graphed function is usually the peak of the wave of that graph. In this case, we see that the peak of the graph is at y = 4. Thus, Amplitude = 4

Period is the difference between two consecutive maximum or minimum points. In this graph, the period is π

Read more about Midline, Amplitude and Period at; brainly.com/question/21124447

7 0
2 years ago
Other questions:
  • What is the range of the following list of ordered pairs? (-3, -1), (0, -2), (4, 3), (1, 5)
    14·1 answer
  • Beyonce is solving a system of equations:
    8·1 answer
  • Can you also tell me if the others are right? please? ​
    12·2 answers
  • A triangle has an area of 36 square units. Its height is 9 units.
    11·2 answers
  • Suppose heights of seasonal pine saplings are normally distributed and have a known population standard deviation of 17 millimet
    11·1 answer
  • Two trains leave from the same station at the same time and travel in opposite directions. One train
    15·1 answer
  • Which of the following choices are equivalent to the expression below? Check all that apply. HELP PLEASE PLEASE HELP PLEASE PLEA
    14·2 answers
  • 3. Could a 5 x 8 matrix have dim Col A 6 and dim Nul A - 2? Justify your answer. (Hint: Think about the possible pivot rows and
    15·1 answer
  • The ages of three friends are represented by three consecutive odd numbers. The sum of their ages is 63. If the youngest is repr
    6·1 answer
  • Which of the following terms best describes the graph of the exponential
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!