1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Alex Ar [27]
2 years ago
8

Find

y}{dx} " align="absmiddle" class="latex-formula">
if
y = (x +  \sqrt{x} )^{2}
​
Mathematics
1 answer:
nataly862011 [7]2 years ago
4 0

Answer:

\displaystyle y' = 2x + 3\sqrt{x} + 1

General Formulas and Concepts:

<u>Pre-Algebra</u>

Order of Operations: BPEMDAS

  1. Brackets
  2. Parenthesis
  3. Exponents
  4. Multiplication
  5. Division
  6. Addition
  7. Subtraction
  • Left to Right<u> </u>

<u>Algebra I</u>

  • Terms/Coefficients
  • Anything to the 0th power is 1
  • Exponential Rule [Rewrite]:                                                                              \displaystyle b^{-m} = \frac{1}{b^m}
  • Exponential Rule [Root Rewrite]:                                                                     \displaystyle \sqrt[n]{x} = x^{\frac{1}{n}}<u> </u>

<u>Calculus</u>

Derivatives

Derivative Notation

Basic Power Rule:

  • f(x) = cxⁿ
  • f’(x) = c·nxⁿ⁻¹

Derivative Rule [Chain Rule]:                                                                                    \displaystyle \frac{d}{dx}[f(g(x))] =f'(g(x)) \cdot g'(x)

Step-by-step explanation:

<u>Step 1: Define</u>

<em>Identify</em>

<em />\displaystyle y = (x + \sqrt{x})^2<em />

<em />

<u>Step 2: Differentiate</u>

  1. Chain Rule:                                                                                                        \displaystyle y' = 2(x + \sqrt{x})^{2 - 1} \cdot \frac{d}{dx}[x + \sqrt{x}]
  2. Rewrite [Exponential Rule - Root Rewrite]:                                                     \displaystyle y' = 2(x + x^{\frac{1}{2}})^{2 - 1} \cdot \frac{d}{dx}[x + x^{\frac{1}{2}}]
  3. Simplify:                                                                                                             \displaystyle y' = 2(x + x^{\frac{1}{2}}) \cdot \frac{d}{dx}[x + x^{\frac{1}{2}}]
  4. Basic Power Rule:                                                                                             \displaystyle y' = 2(x + x^{\frac{1}{2}}) \cdot (1 \cdot x^{1 - 1} + \frac{1}{2}x^{\frac{1}{2} - 1})
  5. Simplify:                                                                                                             \displaystyle y' = 2(x + x^{\frac{1}{2}}) \cdot (1 + \frac{1}{2}x^{-\frac{1}{2}})
  6. Rewrite [Exponential Rule - Rewrite]:                                                              \displaystyle y' = 2(x + x^{\frac{1}{2}}) \cdot (1 + \frac{1}{2x^{\frac{1}{2}}})
  7. Multiply:                                                                                                             \displaystyle y' = 2[(x + x^{\frac{1}{2}}) + \frac{x + x^{\frac{1}{2}}}{2x^{\frac{1}{2}}}]
  8. [Brackets] Add:                                                                                                 \displaystyle y' = 2(\frac{2x + 3x^{\frac{1}{2}} + 1}{2})
  9. Multiply:                                                                                                             \displaystyle y' = 2x + 3x^{\frac{1}{2}} + 1
  10. Rewrite [Exponential Rule - Root Rewrite]:                                                     \displaystyle y' = 2x + 3\sqrt{x} + 1

Topic: AP Calculus AB/BC (Calculus I/II)

Unit: Derivatives

Book: College Calculus 10e

You might be interested in
If the scale factor is
klemol [59]

If the scale factor is 1/5, then the area of the preimage is multiplied by <u>0</u><u>.</u><u>2</u> or <u>1</u><u>/</u><u>5</u> to calculate the area of the new image.

6 0
2 years ago
Anthony owns a bakery and buys raw eggs in packs of 50 for $5.00 each. The delivery is a set free of $10.00. If Anthony has $100
yan [13]

Answer:

D- The set of whole numbers were 1<_x<18

Step-by-step explanation:

4 0
2 years ago
A Square was altered so that one side is increased by 9 inches in the other side is decreased by 2 inches.The area of the result
LekaFEV [45]

Let s represent the length of any one side of the original square.  The longer side of the resulting rectangle is s + 9 and the shorter side s - 2.

The area of this rectangle is (s+9)(s-2) = 60 in^2.

This is a quadratic equation and can be solved using various methods.  Let's rewrite this equation in standard form:  s^2 + 7s - 18 = 60, or:

s^2 + 7s - 78 = 0.  This factors as follows:  (s+13)(s-6)=0, so that s = -13 and s= 6.  Discard s = -13, since the side length cannot be negative.  Then s = 6, and the area of the original square was 36 in^2.

4 0
2 years ago
Answer to this??? Need help
bekas [8.4K]
A) 2 and 7
B) 2 and 6
C)6 and 3
7 0
3 years ago
It cost a farmer 43.60 pre acre to harvest corn. How much does it cost to harvest 1325.5 acres
KATRIN_1 [288]

Answer:

$57,791.8

Step-by-step explanation:

Each acre cost $43.60.

If the famer wants to harvest 1325.5 acres he has to pay 43.6 per acre

43.60×1325.5= 57,791.8

4 0
3 years ago
Other questions:
  • Students in an art class make square tiles that are 5 inches long.They plan to make a row of tiles that is 4feet 2 inches long.
    6·2 answers
  • The school is 625 meters far from Alex house. It took him 15 minutes to go from home to school, and run back to home in 10 minut
    6·1 answer
  • What is the slope and y intercept of the line represented by this equation below? 3x+8y=2
    12·1 answer
  • PLZ HELP WITH THIS!!!! IM TIMED AND NEED CORRECT ANSWERS
    9·1 answer
  • The numerator of the simplified sum is
    10·1 answer
  • Sophia's school has 23 classrooms. Each classroom has 10 tables. How many tables are there in the school? ​
    13·2 answers
  • A baker needs to arrange 487 cookies on plates.
    10·1 answer
  • WILL GIVE BRAINIEST IF CORRECT ANSWER!!!! I need the answer quickly plz I don't need an explanation!
    10·1 answer
  • Which figure can be formed from the net NEED HELP ASAP
    8·1 answer
  • Find the area P(4,6), Q(8,5), and R(5,9)
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!