1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Alex Ar [27]
3 years ago
8

Find

y}{dx} " align="absmiddle" class="latex-formula">
if
y = (x +  \sqrt{x} )^{2}
​
Mathematics
1 answer:
nataly862011 [7]3 years ago
4 0

Answer:

\displaystyle y' = 2x + 3\sqrt{x} + 1

General Formulas and Concepts:

<u>Pre-Algebra</u>

Order of Operations: BPEMDAS

  1. Brackets
  2. Parenthesis
  3. Exponents
  4. Multiplication
  5. Division
  6. Addition
  7. Subtraction
  • Left to Right<u> </u>

<u>Algebra I</u>

  • Terms/Coefficients
  • Anything to the 0th power is 1
  • Exponential Rule [Rewrite]:                                                                              \displaystyle b^{-m} = \frac{1}{b^m}
  • Exponential Rule [Root Rewrite]:                                                                     \displaystyle \sqrt[n]{x} = x^{\frac{1}{n}}<u> </u>

<u>Calculus</u>

Derivatives

Derivative Notation

Basic Power Rule:

  • f(x) = cxⁿ
  • f’(x) = c·nxⁿ⁻¹

Derivative Rule [Chain Rule]:                                                                                    \displaystyle \frac{d}{dx}[f(g(x))] =f'(g(x)) \cdot g'(x)

Step-by-step explanation:

<u>Step 1: Define</u>

<em>Identify</em>

<em />\displaystyle y = (x + \sqrt{x})^2<em />

<em />

<u>Step 2: Differentiate</u>

  1. Chain Rule:                                                                                                        \displaystyle y' = 2(x + \sqrt{x})^{2 - 1} \cdot \frac{d}{dx}[x + \sqrt{x}]
  2. Rewrite [Exponential Rule - Root Rewrite]:                                                     \displaystyle y' = 2(x + x^{\frac{1}{2}})^{2 - 1} \cdot \frac{d}{dx}[x + x^{\frac{1}{2}}]
  3. Simplify:                                                                                                             \displaystyle y' = 2(x + x^{\frac{1}{2}}) \cdot \frac{d}{dx}[x + x^{\frac{1}{2}}]
  4. Basic Power Rule:                                                                                             \displaystyle y' = 2(x + x^{\frac{1}{2}}) \cdot (1 \cdot x^{1 - 1} + \frac{1}{2}x^{\frac{1}{2} - 1})
  5. Simplify:                                                                                                             \displaystyle y' = 2(x + x^{\frac{1}{2}}) \cdot (1 + \frac{1}{2}x^{-\frac{1}{2}})
  6. Rewrite [Exponential Rule - Rewrite]:                                                              \displaystyle y' = 2(x + x^{\frac{1}{2}}) \cdot (1 + \frac{1}{2x^{\frac{1}{2}}})
  7. Multiply:                                                                                                             \displaystyle y' = 2[(x + x^{\frac{1}{2}}) + \frac{x + x^{\frac{1}{2}}}{2x^{\frac{1}{2}}}]
  8. [Brackets] Add:                                                                                                 \displaystyle y' = 2(\frac{2x + 3x^{\frac{1}{2}} + 1}{2})
  9. Multiply:                                                                                                             \displaystyle y' = 2x + 3x^{\frac{1}{2}} + 1
  10. Rewrite [Exponential Rule - Root Rewrite]:                                                     \displaystyle y' = 2x + 3\sqrt{x} + 1

Topic: AP Calculus AB/BC (Calculus I/II)

Unit: Derivatives

Book: College Calculus 10e

You might be interested in
Which of the following represents a direct variation?
andrey2020 [161]
Direct variation should be called linear variation.

In this case, the answer is B.

A has the quadratic variation, C has the inverse variation, D has the cubic variation
6 0
3 years ago
Please help. thank you
MaRussiya [10]

Answer: what do need help on

Step-by-step explanation:

4 0
2 years ago
How can the iready test is a real test?
Leona [35]
It isn't a real test. I do believe it helps you with your grade and the classes you'll take next year.
3 0
3 years ago
Find what is x + 2½ = 10?
Ilia_Sergeevich [38]

Answer:

10 its just 10 or smthing

6 0
3 years ago
Read 2 more answers
A class votes for their class President Kennedy receives 21 votes which is 6% of the vote what is the total number of students w
Katarina [22]

Answer:

21

Step-by-step explanation:

literally says it in the text ight

6 0
3 years ago
Read 2 more answers
Other questions:
  • Pleeeaaaase help me #16
    15·1 answer
  • Estimate the quotient 24 3/7÷3 7/13
    11·2 answers
  • How can I reduce 60/1000 into simplest form?
    6·2 answers
  • In country​ A, the number of highway bridges for the years 2000 to 2005 can be modeled by the equation y=149(x+1.5)^2+489,505, w
    13·1 answer
  • Which is greater 4/5 or 5/8
    8·2 answers
  • Given h(x)=-x-1,find h(-2)
    10·1 answer
  • Which of the following lists all the integer solutions of the inequality
    6·1 answer
  • Help me pls just label answers <br>nevermind
    5·1 answer
  • The area of a square having length 1 cm =<br>mm.​
    12·2 answers
  • For what values of x and y is
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!