1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Alex Ar [27]
3 years ago
8

Find

y}{dx} " align="absmiddle" class="latex-formula">
if
y = (x +  \sqrt{x} )^{2}
​
Mathematics
1 answer:
nataly862011 [7]3 years ago
4 0

Answer:

\displaystyle y' = 2x + 3\sqrt{x} + 1

General Formulas and Concepts:

<u>Pre-Algebra</u>

Order of Operations: BPEMDAS

  1. Brackets
  2. Parenthesis
  3. Exponents
  4. Multiplication
  5. Division
  6. Addition
  7. Subtraction
  • Left to Right<u> </u>

<u>Algebra I</u>

  • Terms/Coefficients
  • Anything to the 0th power is 1
  • Exponential Rule [Rewrite]:                                                                              \displaystyle b^{-m} = \frac{1}{b^m}
  • Exponential Rule [Root Rewrite]:                                                                     \displaystyle \sqrt[n]{x} = x^{\frac{1}{n}}<u> </u>

<u>Calculus</u>

Derivatives

Derivative Notation

Basic Power Rule:

  • f(x) = cxⁿ
  • f’(x) = c·nxⁿ⁻¹

Derivative Rule [Chain Rule]:                                                                                    \displaystyle \frac{d}{dx}[f(g(x))] =f'(g(x)) \cdot g'(x)

Step-by-step explanation:

<u>Step 1: Define</u>

<em>Identify</em>

<em />\displaystyle y = (x + \sqrt{x})^2<em />

<em />

<u>Step 2: Differentiate</u>

  1. Chain Rule:                                                                                                        \displaystyle y' = 2(x + \sqrt{x})^{2 - 1} \cdot \frac{d}{dx}[x + \sqrt{x}]
  2. Rewrite [Exponential Rule - Root Rewrite]:                                                     \displaystyle y' = 2(x + x^{\frac{1}{2}})^{2 - 1} \cdot \frac{d}{dx}[x + x^{\frac{1}{2}}]
  3. Simplify:                                                                                                             \displaystyle y' = 2(x + x^{\frac{1}{2}}) \cdot \frac{d}{dx}[x + x^{\frac{1}{2}}]
  4. Basic Power Rule:                                                                                             \displaystyle y' = 2(x + x^{\frac{1}{2}}) \cdot (1 \cdot x^{1 - 1} + \frac{1}{2}x^{\frac{1}{2} - 1})
  5. Simplify:                                                                                                             \displaystyle y' = 2(x + x^{\frac{1}{2}}) \cdot (1 + \frac{1}{2}x^{-\frac{1}{2}})
  6. Rewrite [Exponential Rule - Rewrite]:                                                              \displaystyle y' = 2(x + x^{\frac{1}{2}}) \cdot (1 + \frac{1}{2x^{\frac{1}{2}}})
  7. Multiply:                                                                                                             \displaystyle y' = 2[(x + x^{\frac{1}{2}}) + \frac{x + x^{\frac{1}{2}}}{2x^{\frac{1}{2}}}]
  8. [Brackets] Add:                                                                                                 \displaystyle y' = 2(\frac{2x + 3x^{\frac{1}{2}} + 1}{2})
  9. Multiply:                                                                                                             \displaystyle y' = 2x + 3x^{\frac{1}{2}} + 1
  10. Rewrite [Exponential Rule - Root Rewrite]:                                                     \displaystyle y' = 2x + 3\sqrt{x} + 1

Topic: AP Calculus AB/BC (Calculus I/II)

Unit: Derivatives

Book: College Calculus 10e

You might be interested in
Which number should follow in this series: 64/64 9/12 6/12​
zheka24 [161]

Answer: \frac{1}{4}

Step-by-step explanation:

You can reduce the fractions, then:

\frac{64}{64}=1

\frac{9}{12}=\frac{3}{4}

\frac{6}{12}=\frac{3}{6}=\frac{1}{2}

Rewrite them as following:

1,\frac{3}{4},\frac{1}{2}

If you subtract the first number and the second number, you obtain:

1-\frac{3}{4}=\frac{1}{4}

 If you subtract the second number and the second number, you obtain:

\frac{3}{4}-\frac{1}{2}=\frac{1}{4}

Therefore, you must subtract \frac{1}{2} and \frac{1}{4} to obtain the number asked. Then, this is:

\frac{1}{2}-\frac{1}{4}=\frac{1}{4}

6 0
3 years ago
Read 2 more answers
1. What is the formula for compound interest?
Rus_ich [418]

Answer:

  1.   CI = P (1 + \frac{r}{100} )^ n - P

        CI = A - P

      Where P is Principal

      R is interest rate

      n is number of years

   2. a. Semi annually - four times in a year

       b. Monthly           -  two times in a year

       c.  annually          -  once in a year

Step-by-step explanation:

1.  Money is said to be lent at compound interest , when the interest has become due at certain fixed period say, one year, half year, etc.., is given not paid to money lender, but is added to sum lent . The amount thus obtained become principal for next month and this process repeat until last period .

i.e CI = Final period - Initial period

or CI = A - P

or CI = P(1+ \frac{r}{100}) ^n - P

2. (a) Semi annually

        A = P (1 + \frac{r}{4 * 100} )^ n × 4

   (b)  Monthly

       A = P (1 + \frac{r}{2 * 100} ) ^ n × 2

   

   (c)  Annually

       A = P (1 + \frac{r}{100} ) ^ n

3 0
3 years ago
Can you help me please?
Daniel [21]

59pounds * 5days = 295pounds

6.95pounds * 3breakfasts = 20.85pounds

12.50pounds * 1eveningmeal = 12.50pounds

295pounds + 20.85pounds + 12.50pounds = 328.35pounds

Wrote out the units just for clarity! Liz payed 328.25 pounds altogether.

4 0
3 years ago
Find the slope of the line that passes through (1, 15) (10, 8)
Sphinxa [80]

Answer:

m=-7/9

Step-by-step explanation:

5 0
3 years ago
Read 2 more answers
How do you solve 4.75 times 2.2
Serga [27]

Answer:

10.45

Step-by-step explanation:

To solve it without the calculator:

First, you multiply 4.75 times 0.2    (0.95)

Then you multiply 4.75 times 2       (9.5)

Then you add the 2 numbers to get the answer.

0.95 + 9.5 = 10.45

With the calculator, just put in the 2 numbers and click enter!

7 0
3 years ago
Other questions:
  • −2x−x+8 please help cant figure it out
    15·1 answer
  • For each system of equations, drag the true statement about its solution set to the box under the system.
    7·1 answer
  • An ore is 0.75% pure gold. How many kilograms of gold are in 500 kg of ore?
    15·2 answers
  • 50 points!
    6·2 answers
  • Slope: -5, y-intercept:3
    5·2 answers
  • Who ever gets this correct ill give brainliest and thank you and 5 stars
    7·1 answer
  • Help me please I have no more time for this work to graded
    7·1 answer
  • Please solve in the next 10 minutes pleaseeee
    9·1 answer
  • (its not 90x+2000) I NEED HELPPP
    11·1 answer
  • Pls help .....30 points
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!