1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Alex Ar [27]
3 years ago
8

Find

y}{dx} " align="absmiddle" class="latex-formula">
if
y = (x +  \sqrt{x} )^{2}
​
Mathematics
1 answer:
nataly862011 [7]3 years ago
4 0

Answer:

\displaystyle y' = 2x + 3\sqrt{x} + 1

General Formulas and Concepts:

<u>Pre-Algebra</u>

Order of Operations: BPEMDAS

  1. Brackets
  2. Parenthesis
  3. Exponents
  4. Multiplication
  5. Division
  6. Addition
  7. Subtraction
  • Left to Right<u> </u>

<u>Algebra I</u>

  • Terms/Coefficients
  • Anything to the 0th power is 1
  • Exponential Rule [Rewrite]:                                                                              \displaystyle b^{-m} = \frac{1}{b^m}
  • Exponential Rule [Root Rewrite]:                                                                     \displaystyle \sqrt[n]{x} = x^{\frac{1}{n}}<u> </u>

<u>Calculus</u>

Derivatives

Derivative Notation

Basic Power Rule:

  • f(x) = cxⁿ
  • f’(x) = c·nxⁿ⁻¹

Derivative Rule [Chain Rule]:                                                                                    \displaystyle \frac{d}{dx}[f(g(x))] =f'(g(x)) \cdot g'(x)

Step-by-step explanation:

<u>Step 1: Define</u>

<em>Identify</em>

<em />\displaystyle y = (x + \sqrt{x})^2<em />

<em />

<u>Step 2: Differentiate</u>

  1. Chain Rule:                                                                                                        \displaystyle y' = 2(x + \sqrt{x})^{2 - 1} \cdot \frac{d}{dx}[x + \sqrt{x}]
  2. Rewrite [Exponential Rule - Root Rewrite]:                                                     \displaystyle y' = 2(x + x^{\frac{1}{2}})^{2 - 1} \cdot \frac{d}{dx}[x + x^{\frac{1}{2}}]
  3. Simplify:                                                                                                             \displaystyle y' = 2(x + x^{\frac{1}{2}}) \cdot \frac{d}{dx}[x + x^{\frac{1}{2}}]
  4. Basic Power Rule:                                                                                             \displaystyle y' = 2(x + x^{\frac{1}{2}}) \cdot (1 \cdot x^{1 - 1} + \frac{1}{2}x^{\frac{1}{2} - 1})
  5. Simplify:                                                                                                             \displaystyle y' = 2(x + x^{\frac{1}{2}}) \cdot (1 + \frac{1}{2}x^{-\frac{1}{2}})
  6. Rewrite [Exponential Rule - Rewrite]:                                                              \displaystyle y' = 2(x + x^{\frac{1}{2}}) \cdot (1 + \frac{1}{2x^{\frac{1}{2}}})
  7. Multiply:                                                                                                             \displaystyle y' = 2[(x + x^{\frac{1}{2}}) + \frac{x + x^{\frac{1}{2}}}{2x^{\frac{1}{2}}}]
  8. [Brackets] Add:                                                                                                 \displaystyle y' = 2(\frac{2x + 3x^{\frac{1}{2}} + 1}{2})
  9. Multiply:                                                                                                             \displaystyle y' = 2x + 3x^{\frac{1}{2}} + 1
  10. Rewrite [Exponential Rule - Root Rewrite]:                                                     \displaystyle y' = 2x + 3\sqrt{x} + 1

Topic: AP Calculus AB/BC (Calculus I/II)

Unit: Derivatives

Book: College Calculus 10e

You might be interested in
Write and graph exponential decay function
Anna71 [15]
P
pp is an exponential function with an initial value of
6 0
3 years ago
Which of the following sets of ordered pairs is a function?
Bumek [7]
I think B. Would be the answer
3 0
3 years ago
14
Nuetrik [128]

Answer:

Distance LM = 5.20 unit (Approx.)

Step-by-step explanation:

Given coordinates;

L(1, 4, 7) and M(2, 9, 8)

Find:

Distance LM

Computation:

Distance between three-dimensional plane = √(x2 - x1)² + (y2 - y1)² + (z2 - z1)²

Distance LM = √(2 - 1)² + (9 - 4)² + (8 - 7)²

Distance LM = √(1)² + (5)² + (1)²

Distance LM = √1 + 25 + 1

Distance LM = √27

Distance LM = 3√3 unit

Distance LM = 3(1.732)

Distance LM = 5.196

Distance LM = 5.20 unit (Approx.)

5 0
3 years ago
Given f(x) = 364-27, what is the value of f(16)​
vekshin1

Answer:

f(16)=337

Step-by-step explanation:

4 0
3 years ago
A chain has 47 links. 13 link from one end is rusted. From the other end 17 link is also rusted. How many links lie between thes
Butoxors [25]

Answer:

17

Step-by-step explanation:

7 0
3 years ago
Read 2 more answers
Other questions:
  • If the sales tax rate is 7.25% in California, then how much would you pay in Los Angeles for a coat that cost $120.00?
    13·2 answers
  • What is -1/8 times 16 2/3?.
    10·1 answer
  • What is 1,144,646 rounded to the nearest million
    6·2 answers
  • The figure to the right shows two parallel lines interested by a transversal.
    9·2 answers
  • Which of the following equations best represents the graph of a function f(m)?
    9·1 answer
  • Look at the graph shown below:
    11·2 answers
  • Round 7.408 to the nearest thousand​
    5·2 answers
  • How much more than 1/4 cup is 3/4 cup?
    11·2 answers
  • Please help i think the answer is c but im not sure
    7·1 answer
  • In a group of 31 pupils, 4 play the flute only. 14 play the piano only. 7 play neither instrument. A student is selected at rand
    15·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!