<span>Solving the equation for Y = 1.
5 * (3 * 1 - 2) = 15 * 1 - 10
5 * (3 - 2) = 15 -10
5 * 1 = 5
5 = 5
Solving the equation for Y = 2.
5 * (3 * 2 - 2) = 15 * 2 - 10
5 * (6 - 2) = 30 -10
5 * 4 = 20
20 = 20
Solving the equation for Y = 4.
5 * (3 * 4 - 2) = 15 * 4 - 10
5 * (12 - 2) = 60 -10
5 * 10 = 50
50 = 50
Solving the equation for Y = 8.
5 * (3 * 8 - 2) = 15 * 8 - 10
5 * (24 - 2) = 120 -10
5 * 22 = 110
110 = 110
Solving the equation for Y = 9.
5 * (3 * 9 - 2) = 15 * 9 - 10
5 * (27 - 2) = 135 -10
5 * 25 = 125
125 = 125
This proves that the equation holds good for at least 5 values of 'y', which are 1, 2, 4, 8 and 9.
However, it can be proved that the equation holds good for any value of y.
Expression 5(3y-2) can be simplified to 15y -10 which is the same expression on the right had side of the equation provided.
So, equation 5(3y-2)=15y-10 is actually 15y-10=15y-10 and since this is true for all values of y, it has been proved that it is true for at least 5 values of y.</span>
Step-by-step explanation:

Answer:
Adding the exponents
Step-by-step explanation:
Multiplying exponential terms with the same base
To multiply exponents with same base , we use exponential property

When we multiply exponents with same base then we add the exponents
So, adding the exponents best explains to simplify the expression that has same base with exponents .
X is each friend
3x + 28 > 200
3x > 172
x > $57.33