It is fine that you did not include the measure of angle XYZ in your posting.
This question is testing your knowledge of the four types of transformations.
1) Translations - an item is "slid" to a new location.
2) Reflections - an item is "flipped" (usually over the x-axis or y-axis)
3) Rotations - an item is rotated, usually around the origin (the point (0,0) is the center of most rotations, especially in high school math).
4) Dilations - an item is enlarged or reduced by a certain ratio.
It the first three, the image after the transformation is congruent to the pre-image. It has the same size and shape. It is simply flipped, rotated, slid...
But... in the fourth, dilation, the image now has a different size. It is still, however the same shape.
In geometry terms, after the first three transformations, the image is still "congruent" to the pre-image. After dilation, the image is "similar" but not "congruent."
So... all that to say that when you rotate an angle around the origin, the measure of the angle doesn't change.
So the first choice is correct. The measure of the image of the angle is the same as the measure of the angle.
<span>m∠X’Y’Z’ = m∠XYZ
</span>
Answer:
3.5
Step-by-step explanation:
you will go like sum of frequency multiplied by score divided by sum of frequency
Answer:
5:2
Step-by-step explanation:
The property used to rewrite the given expression is product property.
Answer: Option A
<u>Step-by-step explanation:</u>
Given equation:

The sum of the two logarithms of two quantities (on the same basis) corresponds to the logarithm of their product on the same basis. The product log is equal to the log’s sum of the factors.

There are several rules that you can use to solve logarithmic equations. One of these guidelines is the logarithmic products rule that you can use to differentiate complex protocols in different ways. Different values that can be valuable are the quota principle and the logarithm rule. The logarithmic products rule is essential and is regularly used in analysis to control logs and simplify baseline conditions.