x = longer section
y = shorter section
x + y = 109
x = 2y + 10
so we sub in eq 2 into eq 1
2y + 10 + y = 109
3y + 10 = 109
3y = 109 - 10
3y = 99
y = 99/3
y = 33 <=== shorter section is 33 cm
x = 2y + 10
x = 2(33) + 10
x = 66 + 10
x = 76 <=== longer section is 76 cm
Answer:
Part a) ![BC=10\ units](https://tex.z-dn.net/?f=BC%3D10%5C%20units)
Part b) ![AC=13.66\ units](https://tex.z-dn.net/?f=AC%3D13.66%5C%20units)
Step-by-step explanation:
step 1
Find the length side BC
Applying the law of sines
we know that
![\frac{AB}{sin(C)}=\frac{BC}{sin(A)}](https://tex.z-dn.net/?f=%5Cfrac%7BAB%7D%7Bsin%28C%29%7D%3D%5Cfrac%7BBC%7D%7Bsin%28A%29%7D)
we have
![AB=5\sqrt{2}\ units](https://tex.z-dn.net/?f=AB%3D5%5Csqrt%7B2%7D%5C%20units)
![A=45^o](https://tex.z-dn.net/?f=A%3D45%5Eo)
![C=30^o](https://tex.z-dn.net/?f=C%3D30%5Eo)
substitute
![\frac{5\sqrt{2}}{sin(30^o)}=\frac{BC}{sin(45^o)}](https://tex.z-dn.net/?f=%5Cfrac%7B5%5Csqrt%7B2%7D%7D%7Bsin%2830%5Eo%29%7D%3D%5Cfrac%7BBC%7D%7Bsin%2845%5Eo%29%7D)
solve for BC
![BC=\frac{5\sqrt{2}}{sin(30^o)}(sin(45^o))](https://tex.z-dn.net/?f=BC%3D%5Cfrac%7B5%5Csqrt%7B2%7D%7D%7Bsin%2830%5Eo%29%7D%28sin%2845%5Eo%29%29)
![BC=10\ units](https://tex.z-dn.net/?f=BC%3D10%5C%20units)
step 2
Find the measure of angle B
we know that
The sum of the interior angles in a triangle must be equal to 180 degrees
so
![m\angle A+m\angle B+m\angle C=180^o](https://tex.z-dn.net/?f=m%5Cangle%20A%2Bm%5Cangle%20B%2Bm%5Cangle%20C%3D180%5Eo)
substitute the given values
![45^o+m\angle B+30^o=180^o](https://tex.z-dn.net/?f=45%5Eo%2Bm%5Cangle%20B%2B30%5Eo%3D180%5Eo)
![75^o+m\angle B=180^o](https://tex.z-dn.net/?f=75%5Eo%2Bm%5Cangle%20B%3D180%5Eo)
![m\angle B=180^o-75^o](https://tex.z-dn.net/?f=m%5Cangle%20B%3D180%5Eo-75%5Eo)
![m\angle B=105^o](https://tex.z-dn.net/?f=m%5Cangle%20B%3D105%5Eo)
step 3
Find the length side AC
Applying the law of sines
we know that
![\frac{AB}{sin(C)}=\frac{AC}{sin(B)}](https://tex.z-dn.net/?f=%5Cfrac%7BAB%7D%7Bsin%28C%29%7D%3D%5Cfrac%7BAC%7D%7Bsin%28B%29%7D)
we have
![AB=5\sqrt{2}\ units](https://tex.z-dn.net/?f=AB%3D5%5Csqrt%7B2%7D%5C%20units)
![A=45^o](https://tex.z-dn.net/?f=A%3D45%5Eo)
![B=105^o](https://tex.z-dn.net/?f=B%3D105%5Eo)
substitute
![\frac{5\sqrt{2}}{sin(30^o)}=\frac{AC}{sin(105^o)}](https://tex.z-dn.net/?f=%5Cfrac%7B5%5Csqrt%7B2%7D%7D%7Bsin%2830%5Eo%29%7D%3D%5Cfrac%7BAC%7D%7Bsin%28105%5Eo%29%7D)
solve for AC
![AC=\frac{5\sqrt{2}}{sin(30^o)}(sin(105^o))](https://tex.z-dn.net/?f=AC%3D%5Cfrac%7B5%5Csqrt%7B2%7D%7D%7Bsin%2830%5Eo%29%7D%28sin%28105%5Eo%29%29)
![AC=13.66\ units](https://tex.z-dn.net/?f=AC%3D13.66%5C%20units)
The scientific notation is 37.5×10^-6
Answer:
To inf and beond
Step-by-step explanation:
Answer:
![\vec{r(t)}=t\hat{i}+6t^2\hat{j}+(3t^2+72t^4)\hat{k} \text{ For }t \in (-\infty, \infty)](https://tex.z-dn.net/?f=%5Cvec%7Br%28t%29%7D%3Dt%5Chat%7Bi%7D%2B6t%5E2%5Chat%7Bj%7D%2B%283t%5E2%2B72t%5E4%29%5Chat%7Bk%7D%20%5Ctext%7B%20For%20%7Dt%20%5Cin%20%28-%5Cinfty%2C%20%5Cinfty%29)
Step-by-step explanation:
First plug the equation of y into the equation of z, so that we get their intersection:
We plug
![y=6x^2](https://tex.z-dn.net/?f=y%3D6x%5E2)
Into: ![z=3x^2+2y^2](https://tex.z-dn.net/?f=z%3D3x%5E2%2B2y%5E2)
So, we get:
![z=3x^2+2(6x^2)^2\\z=3x^2+2(36x^4)\\z=3x^2+72x^4](https://tex.z-dn.net/?f=z%3D3x%5E2%2B2%286x%5E2%29%5E2%5C%5Cz%3D3x%5E2%2B2%2836x%5E4%29%5C%5Cz%3D3x%5E2%2B72x%5E4)
Then we set
And plug that in the equation
and the one we just got for z.
So that we get:
![y=6t^2, z=3t^2+72t^4](https://tex.z-dn.net/?f=y%3D6t%5E2%2C%20z%3D3t%5E2%2B72t%5E4)
Therefore, the vector function that represents the curve of intersection is:
![\vec{r(t)}=t\hat{i}+6t^2\hat{j}+(3t^2+72t^4)\hat{k} \text{ For }t \in (-\infty, \infty)](https://tex.z-dn.net/?f=%5Cvec%7Br%28t%29%7D%3Dt%5Chat%7Bi%7D%2B6t%5E2%5Chat%7Bj%7D%2B%283t%5E2%2B72t%5E4%29%5Chat%7Bk%7D%20%5Ctext%7B%20For%20%7Dt%20%5Cin%20%28-%5Cinfty%2C%20%5Cinfty%29)