Answer:
9.8x - 11.1x
Explanation:
25 - 5.2 = 9.8x
0.9 - 12 = -11,1y
Notice: I’m not sure but if it wrong, you could replaced with 10x - 11y which be better answer
Answer:
Step-by-step explanation:
We have the equations
4x + 3y = 18 where x = the side of the square and y = the side of the triangle
For the areas:
A = x^2 + √3y/2* y/2
A = x^2 + √3y^2/4
From the first equation x = (18 - 3y)/4
So substituting in the area equation:
A = [ (18 - 3y)/4]^2 + √3y^2/4
A = (18 - 3y)^2 / 16 + √3y^2/4
Now for maximum / minimum area the derivative = 0 so we have
A' = 1/16 * 2(18 - 3y) * -3 + 1/4 * 2√3 y = 0
-3/8 (18 - 3y) + √3 y /2 = 0
-27/4 + 9y/8 + √3y /2 = 0
-54 + 9y + 4√3y = 0
y = 54 / 15.93
= 3.39 metres
So x = (18-3(3.39) / 4 = 1.96.
This is a minimum value for x.
So the total length of wire the square for minimum total area is 4 * 1.96
= 7.84 m
There is no maximum area as the equation for the total area is a quadratic with a positive leading coefficient.
$26.60 would be you’re answer i believe
Answer:
34:12
Step-by-step explanation:
Answer:
C
Step-by-step explanation:
Calculate AC using Pythagoras' identity in ΔABC
AC² = 20² - 12² = 400 - 144 = 256, hence
AC =
= 16
Now find AD² from ΔACD and ΔABD
ΔACD → AD² = 16² - (20 - x)² = 256 - 400 + 40x - x²
ΔABD → AD² = 12² - x² = 144 - x²
Equate both equations for AD², hence
256 - 400 + 40x - x² = 144 - x²
-144 + 40x - x² = 144 - x² ( add x² to both sides )
- 144 + 40x = 144 ( add 144 to both sides )
40x = 288 ( divide both sides by 40 )
x = 7.2 → C