Answer:
Step-by-step explanation:
It's given in this question,
m∠2 = 41°, m∠5 = 94° and m∠10 = 109°
Since, ∠2 ≅ ∠9 [Alternate interior angles]
m∠2 = m∠9 = 41°
m∠8 + m∠9 + m∠10 = 180° [Sum of angles at a point of a line]
m∠8 + 41 + 109 = 180
m∠8 = 180 - 150
m∠8 = 30°
Since, m∠2 + m∠7 + m∠8 = 180° [Sum of interior angles of a triangle]
41 + m∠7 + 30 = 180
m∠7 = 180 - 71
m∠7 = 109°
m∠6 + m∠7 = 180° [linear pair of angles]
m∠6 + 109 = 180
m∠6 = 180 - 109
= 71°
Since m∠5 + m∠4 = 180° [linear pair of angles]
m∠4 + 94 = 180
m∠4 = 180 - 94
m∠4 = 86°
Since, m∠4 + m∠3 + m∠9 = 180° [Sum of interior angles of a triangle]
86 + m∠3 + 41 = 180
m∠3 = 180 - 127
m∠3 = 53°
m∠1 + m∠2 + m∠3 = 180° [Angles on a point of a line]
m∠1 + 41 + 53 = 180
m∠1 = 180 - 94
m∠1 = 86°
Answer:
In the screenshot, since it won't let me do fraction form.
Step-by-step explanation:
Answer:
100 bags
Step-by-step explanation:
S.E = σ/ √n
0.1 = 1 / √n
Square both sides
0.1² = 1² / n
0.01 = 1 / n
0.01n = 1
n = 1 / 0.01
n = 100
9514 1404 393
Answer:
see attached
Step-by-step explanation:
Most of this exercise is looking at different ways to identify the slope of the line. The first attachment shows the corresponding "run" (horizontal change) and "rise" (vertical change) between the marked points.
In your diagram, these values (run=1, rise=-3) are filled in 3 places. At the top, the changes are described in words. On the left, they are described as "rise" and "run" with numbers. At the bottom left, these same numbers are described by ∆y and ∆x.
The calculation at the right shows the differences between y (numerator) and x (denominator) coordinates. This is how you compute the slope from the coordinates of two points.
If you draw a line through the two points, you find it intersects the y-axis at y=4. This is the y-intercept that gets filled in at the bottom. (The y-intercept here is 1 left and 3 up from the point (1, 1).)