5
First order equations include linear equations. In the coordinate system, the linear equations are defined for lines. A linear equation in one variable is one in which there is a homogeneous variable of degree 1 (i.e., only one variable). Multiple variables may be present in a linear equation. Linear equations in two variables, for example, are used when a linear equation contains two variables. Examples of linear equations include 2x - 3 = 0, 2y = 8, m + 1 = 0, x/2 = 3, and 3x - y + z = 3.
Total books borrowed = 8+4 = 12
No. of non - fiction books = 7
No. of fiction books = 12 -7
= 5
To learn more about linear equation , refer to brainly.com/question/26310043
#SPJ9
Answer: The number is 26.
Step-by-step explanation:
We know that:
The nth term of a sequence is 3n²-1
The nth term of a different sequence is 30–n²
We want to find a number that belongs to both sequences (it is not necessarily for the same value of n) then we can use n in one term (first one), and m in the other (second one), such that n and m must be integer numbers.
we get:
3n²- 1 = 30–m²
Notice that as n increases, the terms of the first sequence also increase.
And as n increases, the terms of the second sequence decrease.
One way to solve this, is to give different values to m (m = 1, m = 2, etc) and see if we can find an integer value for n.
if m = 1, then:
3n²- 1 = 30–1²
3n²- 1 = 29
3n² = 30
n² = 30/3 = 10
n² = 10
There is no integer n such that n² = 10
now let's try with m = 2, then:
3n²- 1 = 30–2² = 30 - 4
3n²- 1 = 26
3n² = 26 + 1 = 27
n² = 27/3 = 9
n² = 9
n = √9 = 3
So here we have m = 2, and n = 3, both integers as we wanted, so we just found the term that belongs to both sequences.
the number is:
3*(3)² - 1 = 26
30 - 2² = 26
The number that belongs to both sequences is 26.
Answer:
d = 25
Step-by-step explanation:

The value of d has to satisfy the inequality
so replace d with one of the given options

We have to simplify the fraction first

Answer:
The answer is (-9)
Step-by-step explanation:
5^2+(-2)^2=29
magnitude=(29)^(1/2)=around 5.3852