4 5/6 would be your answer then you figure out how to take away the whole number
Answer:
625
600+20+5
Step-by-step explanation:
<em>Parenthesis</em>
<em>Exponent</em>
<em>Multiply</em>
<em>Divide</em>
<em>Add</em>
<em>Subtract</em>
<em>From left to right.</em>
<em>Do exponent first.</em>
<em>
</em>
<em>Standard form of 5^4 is: ⇒ 600+200+5</em>
<em>625 is the correct answer.</em>
<em>600+200+5 is the correct answer.</em>
Check the picture below, so the parabola looks more or less like so, with a vertex at (0 , -7), let's recall the vertex is half-way between the focus point and the directrix.
so this horizontal parabola opens up to the left-hand-side, meaning that the "P" distance is a negative value.
![\textit{horizontal parabola vertex form with focus point distance} \\\\ 4p(x- h)=(y- k)^2 \qquad \begin{cases} \stackrel{vertex}{(h,k)}\qquad \stackrel{focus~point}{(h+p,k)}\qquad \stackrel{directrix}{x=h-p}\\\\ p=\textit{distance from vertex to }\\ \qquad \textit{ focus or directrix}\\\\ \stackrel{"p"~is~negative}{op ens~\supset}\qquad \stackrel{"p"~is~positive}{op ens~\subset} \end{cases} \\\\[-0.35em] \rule{34em}{0.25pt}](https://tex.z-dn.net/?f=%5Ctextit%7Bhorizontal%20parabola%20vertex%20form%20with%20focus%20point%20distance%7D%20%5C%5C%5C%5C%204p%28x-%20h%29%3D%28y-%20k%29%5E2%20%5Cqquad%20%5Cbegin%7Bcases%7D%20%5Cstackrel%7Bvertex%7D%7B%28h%2Ck%29%7D%5Cqquad%20%5Cstackrel%7Bfocus~point%7D%7B%28h%2Bp%2Ck%29%7D%5Cqquad%20%5Cstackrel%7Bdirectrix%7D%7Bx%3Dh-p%7D%5C%5C%5C%5C%20p%3D%5Ctextit%7Bdistance%20from%20vertex%20to%20%7D%5C%5C%20%5Cqquad%20%5Ctextit%7B%20focus%20or%20directrix%7D%5C%5C%5C%5C%20%5Cstackrel%7B%22p%22~is~negative%7D%7Bop%20ens~%5Csupset%7D%5Cqquad%20%5Cstackrel%7B%22p%22~is~positive%7D%7Bop%20ens~%5Csubset%7D%20%5Cend%7Bcases%7D%20%5C%5C%5C%5C%5B-0.35em%5D%20%5Crule%7B34em%7D%7B0.25pt%7D)
![\begin{cases} h=0\\ k=-7\\ p=-9 \end{cases}\implies 4(-9)(x-0)~~ = ~~[y-(-7)]^2 \\\\\\ -36x=(y+7)^2\implies x=-\cfrac{1}{36}(y+7)^2](https://tex.z-dn.net/?f=%5Cbegin%7Bcases%7D%20h%3D0%5C%5C%20k%3D-7%5C%5C%20p%3D-9%20%5Cend%7Bcases%7D%5Cimplies%204%28-9%29%28x-0%29~~%20%3D%20~~%5By-%28-7%29%5D%5E2%20%5C%5C%5C%5C%5C%5C%20-36x%3D%28y%2B7%29%5E2%5Cimplies%20x%3D-%5Ccfrac%7B1%7D%7B36%7D%28y%2B7%29%5E2)
Solution: Yes, the random variable y will have a binomial distribution. Because there are two possible outcomes 1. number of days of rain and 2. number of days of no rain.
The parameters of binomial distribution are
and 
The parameter n is given as the number of day's under consideration.

The parameter p is not given, but it can be estimated by number of days it rained divided by the total number of days under consideration.
