The equation of the elipse is given by:
![\frac{(x - 14)^2}{169} + \frac{y^2}{144} = 1](https://tex.z-dn.net/?f=%5Cfrac%7B%28x%20-%2014%29%5E2%7D%7B169%7D%20%2B%20%5Cfrac%7By%5E2%7D%7B144%7D%20%3D%201)
The equation of an elipse of center
is given by:
![\frac{(x - x_0)^2}{a^2} + \frac{(y - y_0)^2}{b^2} = 0](https://tex.z-dn.net/?f=%5Cfrac%7B%28x%20-%20x_0%29%5E2%7D%7Ba%5E2%7D%20%2B%20%5Cfrac%7B%28y%20-%20y_0%29%5E2%7D%7Bb%5E2%7D%20%3D%200)
Values a and b are found according to the <u>vertices and the eccentricity</u>.
It has vertices at (1,0) and (27,0), thus:
![x_0 = \frac{27 + 1}{2} = 14](https://tex.z-dn.net/?f=x_0%20%3D%20%5Cfrac%7B27%20%2B%201%7D%7B2%7D%20%3D%2014)
![y_0 = \frac{0 + 0}{2} = 0](https://tex.z-dn.net/?f=y_0%20%3D%20%5Cfrac%7B0%20%2B%200%7D%7B2%7D%20%3D%200)
![a = \frac{27 - 1}{2} = 13](https://tex.z-dn.net/?f=a%20%3D%20%5Cfrac%7B27%20-%201%7D%7B2%7D%20%3D%2013)
![a^2 = 169](https://tex.z-dn.net/?f=a%5E2%20%3D%20169)
It has eccentricity of
, thus:
![\frac{5}{13} = \frac{c}{a}](https://tex.z-dn.net/?f=%5Cfrac%7B5%7D%7B13%7D%20%3D%20%5Cfrac%7Bc%7D%7Ba%7D)
![\frac{5}{13} = \frac{c}{13}](https://tex.z-dn.net/?f=%5Cfrac%7B5%7D%7B13%7D%20%3D%20%5Cfrac%7Bc%7D%7B13%7D)
![c = 13](https://tex.z-dn.net/?f=c%20%3D%2013)
Thus, b is given according to the following equation:
![c^2 = a^2 - b^2](https://tex.z-dn.net/?f=c%5E2%20%3D%20a%5E2%20-%20b%5E2)
![b^2 = a^2 - c^2](https://tex.z-dn.net/?f=b%5E2%20%3D%20a%5E2%20-%20c%5E2)
![b^2 = 169 - 25](https://tex.z-dn.net/?f=b%5E2%20%3D%20169%20-%2025)
![b = \sqrt{144}](https://tex.z-dn.net/?f=b%20%3D%20%5Csqrt%7B144%7D)
![b = 12](https://tex.z-dn.net/?f=b%20%3D%2012)
The equation of the elipse is:
![\frac{(x - 14)^2}{169} + \frac{y^2}{144} = 1](https://tex.z-dn.net/?f=%5Cfrac%7B%28x%20-%2014%29%5E2%7D%7B169%7D%20%2B%20%5Cfrac%7By%5E2%7D%7B144%7D%20%3D%201)
A similar problem is given at brainly.com/question/21405803
<u>Let's solve this problem step-by-step</u>
<u>Let's set</u>:
2x + 6y = 36 -- equation 1
x + 4y = 20 -- equation 2
(equation 2) * 2
2x + 8y = 40 -- equation 3
(equation 3) - (equation 1)
2y = 4
y = 2 -- equation 4
Plug (equation 4)'s value of y into (equation 2)
x + 4(2) = 20
x = 20 - 8
x = 12
<u>Thus x = 12 and y = 2</u>
<u>Let's check, by substituting these values</u>
![2x + 6y = 36\\2(12)+6(2) = 36\\24+12=36\\36=36\\\\x+4y=20\\12+4(2)=20\\12+8=20\\20=20](https://tex.z-dn.net/?f=2x%20%2B%206y%20%3D%2036%5C%5C2%2812%29%2B6%282%29%20%3D%2036%5C%5C24%2B12%3D36%5C%5C36%3D36%5C%5C%5C%5Cx%2B4y%3D20%5C%5C12%2B4%282%29%3D20%5C%5C12%2B8%3D20%5C%5C20%3D20)
<u>Answer: x = 12 and y = 2</u>
Hope that helps!
Since this is a 45-45-90 triangle, n = 6 and m = 6√3.
I hope this helps!
<span>1. a sine curve with amplitude 2, and period 4pi radians
</span>
the general equation of the sine curve ⇒⇒ y = a sin (nθ)
where: a is the amplitude and n = 2π/perid
∵ <span>amplitude 2, and period 4pi radians
</span>
∴ y = 2 sin (θ/2)
The correct answer is option D. y = 2 sin (θ/2)
===========================================
<span>2.The period and amplitude of the function ⇒⇒ y = 5 cos 2θ
</span>
<span>comparing with y = a cos nθ
</span>
where : a is the amplitude and n = 2π/period
<span>amplitude = 5 , period = 2π/n = 2π/2 = π
</span>
The correct answer is option B. Period: pi radians: Amplitude:5
============================================================
3. tan (2π/3) = tan 120° = -√3
120° lie in the second quadrant and its reference angle = 180° - 120° = 60°
tan function in the second quadrant is negative
∴ tan 120° = - tan 60 = -√3
The correct answer is C. -sqrt3
=====================================================
4. <span>Tan 5π/6 = tan 150° = -(√3)/3
</span>
150° lies in the second quadrant and its reference angle = 180° - 150° = 30°
tan function in the second quadrant is negative
∴ tan 150° = - tan 30 = -(√3)/3
The correct answer is <span>B.-sqrt3/3</span>
Answer:
septillion
Step-by-step explanation: