4tan^(2)x-((4)/(cotx))+sinxcscx
Multiply -1 by the (4)/(cotx) inside the parentheses.
4tan^(2)x-(4)/(cotx)+sinxcscx
To add fractions, the denominators must be equal. The denominators can be made equal by finding the least common denominator (LCD). In this case, the LCD is cotx. Next, multiply each fraction by a factor of 1 that will create the LCD in each of the fractions.
4tan^(2)x*(cotx)/(cotx)-(4)/(cotx)+sin...
Complete the multiplication to produce a denominator of cotx in each expression.
(4tan^(2)xcotx)/(cotx)-(4)/(cotx)+(cot...
Combine the numerators of all expressions that have common denominators.
<span>
(4tan^(2)xcotx-4+cotxsinxcscx)/(cotx)</span>
Answer:
(3x+1)(x+3) is the factorised form for the expression.
Step-by-step explanation:
:3
x
2
+
10
x
+
3
We can Split the Middle Term of this expression to factorise it.
In this technique, if we have to factorise an expression like
a
x
2
+
b
x
+
c
, we need to think of 2 numbers such that:
N
1
⋅
N
2
=
a
⋅
c
=
3
⋅
3
=
9
and,
N
1
+
N
2
=
b
=
10
After trying out a few numbers we get:
N
1
=
9
and
N
2
=
1
9
⋅
1
=
9
, and
9
+
(
1
)
=
10
3
x
2
+
10
x
+
3
=
3
x
2
+
9
x
+
1
x
+
3
=
3
x
(
x
+
3
)
+
1
(
x
+
3
)
(
3
x
+
1
)
(
x
+
3
)
is the factorised form for the expression.
is the factorised form for the expression.
Answer:
( a ) Trinomial, the degree of the polynomial = 3
( b ) Polynomial, the degree of the polynomial = 4
( c ) Binomial, the degree of the polynomial = 2
( d ) Monomial, the degree of the polynomial = 1
Step-by-step explanation: