Answer:
x = 6
Step-by-step explanation:
The area of a triangle is equal to the base times the height divided by two. In this case, the base is 6 (or x, it doesn't really matter) and the height is x (or 6, it doesn't matter). That means that the area of this triangle is equal to 6 * x divided by 2, which is also equal to 18. we can say that 6x/2 = 18, meaning that 6x = 36, so x = 6.
Answer:
The correct answer is C
Step-by-step explanation:
Answer:
The steps 1-7 have been explained
Step-by-step explanation:
The steps are;
1) We will verify that the population standard deviations are known and that the population is normally distributed which means the sample size must be a minimum of 30.
2) We will state the null and alternative hypothesis
3) We will determine the critical values from the relevant tables
4) From the critical values gotten, we will determine it's corresponding region where it can be rejected.
5)We will calculate the value of the test statistic from the formula;
z = [(x1' - x2') - (μ1 - μ2)]/√[((σ1)²/n1) + ((σ2)²/n2)]
6) If the value of the test statistic gotten from step 5 above falls in the region of rejection noted in step 4,then we will reject the null hypothesis
7) After rejection of the null hypothesis, we will now give a decision/conclusion on the claim.
(a) From the histogram, you can see that there are 2 students with scores between 50 and 60; 3 between 60 and 70; 7 between 70 and 80; 9 between 80 and 90; and 1 between 90 and 100. So there are a total of 2 + 3 + 7 + 9 + 1 = 22 students.
(b) This is entirely up to whoever constructed the histogram to begin with... It's ambiguous as to which of the groups contains students with a score of exactly 60 - are they placed in the 50-60 group, or in the 60-70 group?
On the other hand, if a student gets a score of 100, then they would certainly be put in the 90-100 group. So for the sake of consistency, you should probably assume that the groups are assigned as follows:
50 ≤ score ≤ 60 ==> 50-60
60 < score ≤ 70 ==> 60-70
70 < score ≤ 80 ==> 70-80
80 < score ≤ 90 ==> 80-90
90 < score ≤ 100 ==> 90-100
Then a student who scored a 60 should be added to the 50-60 category.