Answer:
y=-1/2x+8
Step-by-step explanation:
Step-by-step explanation:
hope it helps
hdjsjjskkaksjs
Answer:
Part a. t = 7.29 years.
Part b. t = 27.73 years.
Part c. p = $3894.00
Step-by-step explanation:
The formula for continuous compounding is: A = p*e^(rt); where A is the amount after compounding, p is the principle, e is the mathematical constant (2.718281), r is the rate of interest, and t is the time in years.
Part a. It is given that p = $2000, r = 2.5%, and A = $2400. In this part, t is unknown. Therefore: 2400 = 2000*e^(2.5t). This implies 1.2 = e^(0.025t). Taking natural logarithm on both sides yields ln(1.2) = ln(e^(0.025t)). A logarithmic property is that the power of the logarithmic expression can be shifted on the left side of the whole expression, thus multiplying it with the expression. Therefore, ln(1.2) = 0.025t*ln(e). Since ln(e) = 1, and making t the subject gives t = ln(1.2)/0.025. This means that t = 7.29 years (rounded to the nearest 2 decimal places)!!!
Part b. It is given that p = $2000, r = 2.5%, and A = $4000. In this part, t is unknown. Therefore: 4000 = 2000*e^(2.5t). This implies 2 = e^(0.025t). Taking natural logarithm on both sides yields ln(2) = ln(e^(0.025t)). A logarithmic property is that the power of the logarithmic expression can be shifted on the left side of the whole expression, thus multiplying it with the expression. Therefore, ln(2) = 0.025t*ln(e). Since ln(e) = 1, and making t the subject gives t = ln(2)/0.025. This means that t = 27.73 years (rounded to the nearest 2 decimal places)!!!
Part c. It is given that A = $5000, r = 2.5%, and t = 10 years. In this part, p is unknown. Therefore 5000 = p*e^(0.025*10). This implies 5000 = p*e^(0.25). Making p the subject gives p = 5000/e^0.25. This means that p = $3894.00(rounded to the nearest 2 decimal places)!!!
9514 1404 393
Answer:
y = -(x -3)^2 +2
Step-by-step explanation:
The vertex form of the equation for a parabola is ...
y = a(x -h)^2 +k
where the vertex is (h, k) and the value 'a' is a vertical scale factor.
The value of 'a' can be found by looking at the y-value of points ±1 either side of the vertex relative to the vertex. Here, the vertex y-value is +2 at x=3, and either side goes down 1 unit (to y=1) for 1 unit to the right or left. So, a = -1.
Using the values we've read from the graph for the vertex (h, k) = (3, 2) and the scale factor a = -1, we can write the equation as ...
y = -(x -3)^2 +2