•in fraction form the answer is 2/15
•in percentage form the answer is 13.33333333...%
the way to figure this out is to add all the numbers up and divide it by the number of red marbles :)
Given
mean of 406 grams and a standard deviation of 27 grams.
Find
The heaviest 14% of fruits weigh more than how many grams?
Explanation
given
mean = 406 gms
standard deviation = 27 gms
using standard normal table ,
![\begin{gathered} P(Z>z)=14\% \\ 1-P(Zso , [tex]\begin{gathered} x=z\times\sigma+\mu \\ x=1.08\times27+406 \\ x=435.16 \end{gathered}](https://tex.z-dn.net/?f=%5Cbegin%7Bgathered%7D%20P%28Z%3Ez%29%3D14%5C%25%20%5C%5C%201-P%28Zso%20%2C%20%5Btex%5D%5Cbegin%7Bgathered%7D%20x%3Dz%5Ctimes%5Csigma%2B%5Cmu%20%5C%5C%20x%3D1.08%5Ctimes27%2B406%20%5C%5C%20x%3D435.16%20%5Cend%7Bgathered%7D)
Final Answer
Therefore , The heaviest 14% of fruits weigh more than 435.16 gms
Answer:
The general form of a natural logarithmic function is <em>f(x)=a In(x-h) +k.</em> Since the initial average length of the lizards was 20 centimeters, one possible point (h+1,k) through which the function passes is (0,20).
In this case, h= -1 since h +1 = 0 and k = 20.
It follows that x - h = (-1) = x + 1.
So, the function takes the form <em>f(x) = a In(x + 1) +20. </em>
The average length of the lizards after 2 years is 22.197. So f(2) =22.197. We substitute this value into the function
Step-by-step explanation:
<em>f(2) = a In(2 +1) +20 </em>
<em>22.197 = a In(3) + 20 </em>
<em></em>
<em>≈ a </em>
<em>2 ≈ a</em>
So the function that represents the average length of the lizards across this generation is <em>f(x) = 2 In(x+1) +20 </em>