Jay walks 2 1/4 miles which if you double it so the denominators are e same for both 2 1/4 and 1 1/8 then your answer will be 18/8 (Jay) and 9/8 (Reggie). Meaning that Reggie walks have the distance Jay walks.
Simplify each term<span>.</span>
Simplify <span>3log(x)</span><span> by moving </span>3<span> inside the </span>logarithm<span>.
</span><span>log(<span>x^3</span>)+2log(y−1)−5log(x)</span><span>
</span>
Simplify <span>2log(y−1)</span><span> by moving </span>2<span> inside the </span>logarithm<span>.
</span><span>log(<span>x^3</span>)+log((y−1<span>)^2</span>)−5log(x)</span><span>
</span>
Rewrite <span>(y−1<span>)^2</span></span><span> as </span><span><span>(y−1)(y−1)</span>.</span><span>
</span><span>log(<span>x^3</span>)+log((y−1)(y−1))−5log(x)</span><span>
</span>
Expand <span>(y−1)(y−1)</span><span> using the </span>FOIL<span> Method.
</span><span>log(<span>x^3</span>)+log(y(y)+y(−1)−1(y)−1(−1))−5log(x)</span><span>
</span>
Simplify each term<span>.
</span><span>log(<span>x^3</span>)+log(<span>y^2</span>−2y+1)+log(<span>x^<span>−5</span></span>)</span><span>
</span>Remove the negative exponent<span> by rewriting </span><span>x^<span>−5</span></span><span> as </span><span><span>1/<span>x^5</span></span>.</span><span>
</span><span>log(<span>x^3</span>)+log(<span>y^2</span>−2y+1)+log(<span>1/<span>x^5</span></span>)</span><span>
</span>
Combine<span> logs to get </span><span>log(<span>x^3</span>(<span>y^2</span>−2y+1))
</span><span>log(<span>x^3</span>(<span>y^2</span>−2y+1))+log(<span>1/<span>x^5</span></span>)
</span>Combine<span> logs to get </span><span>log(<span><span><span>x^3</span>(<span>y^2</span>−2y+1)/</span><span>x^5</span></span>)</span><span>
</span>log(x^3(y^2−2y+1)/x^5)
Cancel <span>x^3</span><span> in the </span>numerator<span> and </span>denominator<span>.
</span><span>log(<span><span><span>y^2</span>−2y+1/</span><span>x^2</span></span>)</span><span>
</span>Rewrite 1<span> as </span><span><span>1^2</span>.</span>
<span><span>y^2</span>−2y+<span>1^2/</span></span><span>x^2</span>
Factor<span> by </span>perfect square<span> rule.
</span><span>(y−1<span>)^2/</span></span><span>x^2</span>
Replace into larger expression<span>.
</span>
<span>log(<span><span>(y−1<span>)^2/</span></span><span>x^2</span></span>)</span>
Beforehand let me apologize for my sloppy handwriting. I'm a lefty, so please deal with me. . Anyway, the equation you listed didn't really have a x, because a linear equation is y= mx+b, and anything with x is the slope. But I did see y and a number on one side, so I'm like maybe I can get these two alone. So here's what I did:
2y + 4=0
-4 -4 I subtracted 4 on both sides. Why because you would want "y" alone.
Next,
2y= -4
Now to get "y" alone you want to divide on both sides.
2y= -4/ 2
y= -2
Now you're probably thinking "how do you graph it? There's no "x" in the equation." Well, you just graph it. Since the answer is y= -2, you go to the y axis, look for -2, and place a line to indicate that is the equation. And to make it clear, remember y is the y-intercept.
I really do hope this helps you, if not message me. I'll be happy to help, and again I'm sorry for my handwriting!
Find the median of each set:-
Median is middle number of a data set. If a data set has an odd number of numbers then the median is the middle number when ordered form least to greatest but if its an even number you have to find the mean for the middle 2 numbers when ordered for least to greatest.
A.
1.2, 2.4, 3.2, 3.2, 3.6, 4.0, 4.1, 4.7
Even numbers = 8
3.2 + 3.6 = 6.8
6.8 ÷ 2 =
Median = 3.4
So this shows that A isn't the answer because the median of A is 3.4, not 3.2.
B.
1.6, 2.8, 2.9, 3.1, 3.3, 3.6, 4.2, 4.5
Even numbers = 8
3.1 + 3.3 = 6.4
6.4 ÷ 2 = 3.2
Median = 3.2
<span>So this shows that B is the answer because the median of B is 3.2.
C.
1.8, 2.0, 2.0, 2.2, 3.2, 4.7, 4.8, 4.9
</span>
Even numbers = 8
2.2 + 3.2 = 5.4
5.4 ÷ 2 = 2.7
Median = 2.7
<span>So this shows that C isn't the answer because the median of C is 2.7, not 3.2.
</span>
D.
1.4, 1.7, 2.9, 3.0, 3.1, 3.2, 3.2, 3.2, 4
Odd numbers = 9
Median = 3.1
<span>So this shows that D isn't the answer because the median of D is 3.1, not 3.2.
</span>
The stem and leaf plot which median is 3.2 is B.