1) We calculate the volume of a metal bar (without the hole).
volume=area of hexagon x length
area of hexagon=(3√3 Side²)/2=(3√3(60 cm)²) / 2=9353.07 cm²
9353.07 cm²=9353.07 cm²(1 m² / 10000 cm²)=0.935 m²
Volume=(0.935 m²)(2 m)=1.871 m³
2) we calculate the volume of the parallelepiped
Volume of a parallelepiped= area of the section x length
area of the section=side²=(40 cm)²=1600 cm²
1600 cm²=(1600 cm²)(1 m² / 10000 cm²=0.16 m²
Volume of a parallelepiped=(0.16 m²)(2 m)=0.32 m³
3) we calculate the volume of a metal hollow bar:
volume of a metal hollow bar=volume of a metal bar - volume of a parallelepiped
Volume of a metal hollow bar=1.871 m³ - 0.32 m³=1.551 m³
4) we calculate the mass of the metal bar
density=mass/ volume ⇒ mass=density *volume
Data:
density=8.10³ kg/m³
volume=1.551 m³
mass=(8x10³ Kg/m³ )12. * (1.551 m³)=12.408x10³ Kg
answer: The mas of the metal bar is 12.408x10³ kg or 12408 kg
Answer:
<M = <S
Step-by-step explanation:
If ΔMNO ≅ Δ SQR then
<M = <S
5000 × .06 = $300 balance $5,300
5300 × .06 = $318 balance $5,618
5618 × .06 = $337.08 balance $5,955.08
5955.08 ×.06 = $357.30 balance $6,312.38
-2 / 1/4
If you are dividing you have to switch 1/4 to 4/1
-2/1 / 4/1
= -8
Hope this helped
Answer:

Step-by-step explanation:
The formula of a surface area of a ball (sphere):

R - radius
We have R = 15in. Substitute:

If you want to get an approximation, then:
