Answer:
The 99th tower contains 9900 blocks.
Step-by-step explanation:
From the question given, we were told that the nth tower is formed by stacking n blocks on top of an n times n square of blocks. This implies that the number of blocks in n tower will be:
n + n²
Now let us use the diagram to validate the idea.
Tower 1:
n = 1
Number of blocks = 1 + 1² = 2
Tower 2:
Number of blocks = 2 + 2² = 6
Tower 3:
Number of blocks = 3 + 3² = 12
Using same idea, we can obtain the number of blocks in the 99th tower as follow:
Tower 99:
n = 99
Number of blocks = 99 + 99² = 9900
Therefore, the 99th tower contains 9900 blocks.
first off, let's convert the mixed fraction to improper fraction and then proceed, let's notice that by PEMDAS or order of operations, the multiplication is done first, and then any sums.
![\stackrel{mixed}{1\frac{7}{8}}\implies \cfrac{1\cdot 8+7}{8}\implies \stackrel{improper}{\cfrac{15}{8}} \\\\[-0.35em] ~\dotfill\\\\ -\cfrac{3}{4}~~ + ~~\cfrac{15}{8} \div \cfrac{1}{2}\implies -\cfrac{3}{4}~~ + ~~\cfrac{15}{8} \cdot \cfrac{2}{1}\implies -\cfrac{3}{4}~~ + ~~\cfrac{15}{4} \\\\\\ \cfrac{-3+15}{4}\implies \cfrac{12}{4}\implies 3](https://tex.z-dn.net/?f=%5Cstackrel%7Bmixed%7D%7B1%5Cfrac%7B7%7D%7B8%7D%7D%5Cimplies%20%5Ccfrac%7B1%5Ccdot%208%2B7%7D%7B8%7D%5Cimplies%20%5Cstackrel%7Bimproper%7D%7B%5Ccfrac%7B15%7D%7B8%7D%7D%20%5C%5C%5C%5C%5B-0.35em%5D%20~%5Cdotfill%5C%5C%5C%5C%20-%5Ccfrac%7B3%7D%7B4%7D~~%20%2B%20~~%5Ccfrac%7B15%7D%7B8%7D%20%5Cdiv%20%5Ccfrac%7B1%7D%7B2%7D%5Cimplies%20-%5Ccfrac%7B3%7D%7B4%7D~~%20%2B%20~~%5Ccfrac%7B15%7D%7B8%7D%20%5Ccdot%20%5Ccfrac%7B2%7D%7B1%7D%5Cimplies%20-%5Ccfrac%7B3%7D%7B4%7D~~%20%2B%20~~%5Ccfrac%7B15%7D%7B4%7D%20%5C%5C%5C%5C%5C%5C%20%5Ccfrac%7B-3%2B15%7D%7B4%7D%5Cimplies%20%5Ccfrac%7B12%7D%7B4%7D%5Cimplies%203)
Answer:
(plus = +)
<h2>4 + 4 = 8</h2>
-,-
Step-by-step explanation:
<h2>Hope it helps! </h2>
Answer:
D
Step-by-step explanation:
-3 and 3 are opposites but 5 (y), is the same
She will have traveled 7,388 miles.
hope this helps!