Given :
- A = {x: 2x² + 3x - 2 = 0 }
- B = {x : x² + 3x - 4 = 0 }
To find :
Solution :-
<u>The </u><u>first </u><u>set </u><u>is </u><u>,</u>
- A ={x : 2x² + 3x - 2 = 0}
<u>Solving</u><u> </u><u>the </u><u>Quadratic</u><u> equation</u><u> </u><u>,</u>
- 2x² + 3x - 2 = 0
- 2x² + 4x - x - 2 = 0
- 2x( x + 2) -1( x + 2 ) = 0
- (2x -1) ( x + 2) = 0
- x = 0.5 , -2
<u>Hence</u><u> </u><u>,</u>
<u>The </u><u>second</u><u> </u><u>set </u><u>is </u><u>,</u>
- B ={ x :x² + 3x - 4 = 0 }
<u>Solving</u><u> the</u><u> Quadratic</u><u> equation</u><u> </u><u>,</u>
- x² + 3x - 4 = 0
- x² + 4x - x - 4 = 0
- x( x + 4)-1 ( x +4) = 0
- (x + 4) ( x -1) = 0
- x = 1 , -4
<u>Hence</u><u> </u><u>,</u>
<u>Now </u><u>,</u>
- A U B = { 0.5 , 1 , 4 , -2}
- A Π B = {∅ }
Since AΠ B is a null set , hence ,
m∠FDE = 52°
Solution:
Given data:
DE ≅ DF, CD || BE, BC || FD and m∠ABF = 116°
<em>Sum of the adjacent angles in a straight line = 180°</em>
m∠ABF + m∠CBF = 180°
116° + m∠CBF = 180°
m∠CBF = 64°
If CD || BE, then CD || BF.
Hence CD || BE and BE || FD.
Therefore BFCD is a parallelogam.
<em>In parallelogram, Adjacent angles form a linear pair.</em>
m∠CBF + m∠BFD = 180°
64° + m∠BFD = 180°
m∠BFD = 116°
<em>Sum of the adjacent angles in a straight line = 180°</em>
m∠BFD + m∠DFE = 180°
116° + m∠DFE = 180°
m∠DFE = 64°
we know that DE ≅ DF.
<em>In triangle, angles opposite to equal sides are equal.</em>
m∠DFE = m∠DEF
m∠DEF = 64°
<em>sum of all the angles of a triangle = 180°</em>
m∠DFE + m∠DEF + m∠FDE = 180°
64° + 64° + m∠FDE = 180°
m∠FDE = 52°
Answer:
4.19 cubic feet
Step-by-step explanation:
Answer:
Check the explanation
Step-by-step explanation:
Kindly check the attached image below to see the step by step explanation to the question above.
Answer:x=6
Step-by-step explanation: Remove the radical by raising each side to the index of the radical