1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
zavuch27 [327]
3 years ago
14

Who is the richest president in the world​

Mathematics
1 answer:
olga55 [171]3 years ago
3 0

The richest president in the world is Sebastian Pinera, President of Chile with $2.4 billion.

You might be interested in
John was swimming for hour and a half hours at a speed of 2 miles per hour. How far did he swim?
alisha [4.7K]

Answer: 1 mile.

Explanation: 1/2 of an hour is 1 mile because the speed was 2 miles an hour so if you do half of that it is 1 mile.

6 0
3 years ago
Read 2 more answers
Implicit differentiation Please help
Anvisha [2.4K]

Answer:

y''(-1) =8

General Formulas and Concepts:

<u>Pre-Algebra</u>

Order of Operations: BPEMDAS

  1. Brackets
  2. Parenthesis
  3. Exponents
  4. Multiplication
  5. Division
  6. Addition
  7. Subtraction
  • Left to Right

Equality Properties

<u>Algebra I</u>

  • Factoring

<u>Calculus</u>

Implicit Differentiation

The derivative of a constant is equal to 0

Basic Power Rule:

  • f(x) = cxⁿ
  • f’(x) = c·nxⁿ⁻¹

Product Rule: \frac{d}{dx} [f(x)g(x)]=f'(x)g(x) + g'(x)f(x)

Chain Rule: \frac{d}{dx}[f(g(x))] =f'(g(x)) \cdot g'(x)

Quotient Rule: \frac{d}{dx} [\frac{f(x)}{g(x)} ]=\frac{g(x)f'(x)-g'(x)f(x)}{g^2(x)}

Step-by-step explanation:

<u>Step 1: Define</u>

-xy - 2y = -4

Rate of change of the tangent line at point (-1, 4)

<u>Step 2: Differentiate Pt. 1</u>

<em>Find 1st Derivative</em>

  1. Implicit Differentiation [Product Rule/Basic Power Rule]:                            -y - xy' - 2y' = 0
  2. [Algebra] Isolate <em>y'</em> terms:                                                                               -xy' - 2y' = y
  3. [Algebra] Factor <em>y'</em>:                                                                                       y'(-x - 2) = y
  4. [Algebra] Isolate <em>y'</em>:                                                                                         y' = \frac{y}{-x-2}
  5. [Algebra] Rewrite:                                                                                           y' = \frac{-y}{x+2}

<u>Step 3: Find </u><em><u>y</u></em>

  1. Define equation:                    -xy - 2y = -4
  2. Factor <em>y</em>:                                 y(-x - 2) = -4
  3. Isolate <em>y</em>:                                 y = \frac{-4}{-x-2}
  4. Simplify:                                 y = \frac{4}{x+2}

<u>Step 4: Rewrite 1st Derivative</u>

  1. [Algebra] Substitute in <em>y</em>:                                                                               y' = \frac{-\frac{4}{x+2} }{x+2}
  2. [Algebra] Simplify:                                                                                         y' = \frac{-4}{(x+2)^2}

<u>Step 5: Differentiate Pt. 2</u>

<em>Find 2nd Derivative</em>

  1. Differentiate [Quotient Rule/Basic Power Rule]:                                          y'' = \frac{0(x+2)^2 - 8 \cdot 2(x + 2) \cdot 1}{[(x + 2)^2]^2}
  2. [Derivative] Simplify:                                                                                      y'' = \frac{8}{(x+2)^3}

<u>Step 6: Find Slope at Given Point</u>

  1. [Algebra] Substitute in <em>x</em>:                                                                               y''(-1) = \frac{8}{(-1+2)^3}
  2. [Algebra] Evaluate:                                                                                       y''(-1) =8
6 0
3 years ago
Read 2 more answers
Let $DEF$ be an equilateral triangle with side length $3.$ At random, a point $G$ is chosen inside the triangle. Compute the pro
umka21 [38]

|\Omega|=(\text{the area of the triangle})=\dfrac{a^2\sqrt3}{4}=\dfrac{3^2\sqrt3}{4}=\dfrac{9\sqrt3}{4}\\|A|=(\text{the area of the sector})=\dfrac{\alpha\pi r^2}{360}=\dfrac{60\pi \cdot 1^2}{360}=\dfrac{\pi}{6}\\\\\\P(A)=\dfrac{\dfrac{\pi}{6}}{\dfrac{9\sqrt3}{4}}\\\\P(A)=\dfrac{\pi}{6}\cdot\dfrac{4}{9\sqrt3}\\\\P(A)=\dfrac{2\pi}{27\sqrt3}\\\\P(A)=\dfrac{2\pi\sqrt3}{27\cdot3}\\\\P(A)=\dfrac{2\pi\sqrt3}{81}\approx13.4\%

8 0
3 years ago
Read 2 more answers
The measure of an angle is twenty-four times the measure of its complementary angle. What is the measure of each angle?
Bogdan [553]

Answer:

<h2>         3.6° and 86.4°</h2>

Step-by-step explanation:

24x   - measure of an angle

x      - the measure of a complementary angle

Complementary angles adds to 90°

x + 24x = 90°

25x = 90°

x = 90°÷25

x = 3.6°

24x = 24·3.6° = 86.4°

7 0
3 years ago
Graph the quadratic function f(x)=(x−4)(x+2).
Pani-rosa [81]
See attached picture:
 vertex (1,-9)

3 0
3 years ago
Other questions:
  • 32 ounces of water in a glass someone drink 55% how many ounces left in glass
    15·1 answer
  • Write an equivalent expression using the given property.
    12·1 answer
  • Solve for the variable x^2 - 8 = -1 Show all work please
    10·1 answer
  • What is the value of .3 the 4th power
    13·2 answers
  • Lucia tried to solve the system below<br><br> 2x+2y=14
    15·1 answer
  • Help me and I’ll give you brainliest
    14·1 answer
  • Trying to finsh fast so help please
    8·1 answer
  • The same seven pieces shown on the top were used to make two different figures as shown (the pieces do not overlap anywhere).
    6·1 answer
  • A survey showed that 5 out of 6 students own a pet. Based on this result, how many of the 900 students in a school own a pet?
    7·1 answer
  • Solve the simultaneous equation<br> 3x + y = 8<br> x - 3y = 11
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!