Answer:
170.25
Step-by-step explanation:
It's a bit tricky to do not on plain paper, but here:
Just assume the long division symbol looks right
_1_7_0_.25
4 ) 681
-4
2 8
-2 8
0 1
The remainder is "1", so you'll just have to write that as either a fraction or decimal, whatever is assigned.
Fraction: 170 1/4
Decimal: 170.25
R = { (x,y): 3x-y=0 }
The condition is 3x=y so that's not going to be any of these things.
R is reflexive if (x,x)∈R for all x. Let's check.
3x - y = 3x - x = 2x ≠ 0 necessarily. NOT REFLEXIVE
R is symmetric if (x,y)∈R → (y,x)∈R. Let's check.
(x,y)∈R so
3x-y = 0
y = 3x
Is (y,x)∈R. That would be true if 3y-x=0
3y - x = 3(3x) - x = 8x ≠ 0 necessarily NOT SYMMETRIC
R is transitive if (x,y)∈R and (y,z)∈R → (x,z)∈R. Let's check.
3x-y = 0 so y=3x
3y-z = 0 so z=3y = 9x
3x - z = 3x - 9x = -6x ≠ 0 necessarily NOT TRANSITIVE
Answer:
D
Step-by-step explanation:
there were three times as many new subscribers in the 20-29 and the 30-39 age groups combined for the chronicle than in the 20-29 age group for the times.
Answer:
eef the points thanks man
thanks
Step-by-step explanation:
Answer:
V = (About) 22.2, Graph = First graph/Graph in the attachment
Step-by-step explanation:
Remember that in all these cases, we have a specified method to use, the washer method, disk method, and the cylindrical shell method. Keep in mind that the washer and disk method are one in the same, but I feel that the disk method is better as it avoids splitting the integral into two, and rewriting the curves. Here we will go with the disk method.
![\mathrm{V\:=\:\pi \int _a^b\left(r\right)^2dy\:},\\\mathrm{V\:=\:\int _1^3\:\pi \left[\left(1+\frac{2}{y}\right)^2-1\right]dy}](https://tex.z-dn.net/?f=%5Cmathrm%7BV%5C%3A%3D%5C%3A%5Cpi%20%5Cint%20_a%5Eb%5Cleft%28r%5Cright%29%5E2dy%5C%3A%7D%2C%5C%5C%5Cmathrm%7BV%5C%3A%3D%5C%3A%5Cint%20_1%5E3%5C%3A%5Cpi%20%5Cleft%5B%5Cleft%281%2B%5Cfrac%7B2%7D%7By%7D%5Cright%29%5E2-1%5Cright%5Ddy%7D)
The plus 1 in '1 + 2/x' is shifting this graph up from where it is rotating, but the negative 1 is subtracting the area between the y-axis and the shaded region, so that when it's flipped around, it becomes a washer.
![V\:=\:\int _1^3\:\pi \left[\left(1+\frac{2}{y}\right)^2-1\right]dy,\\\\\mathrm{Take\:the\:constant\:out}:\quad \int a\cdot f\left(x\right)dx=a\cdot \int f\left(x\right)dx\\=\pi \cdot \int _1^3\left(1+\frac{2}{y}\right)^2-1dy\\\\\mathrm{Apply\:the\:Sum\:Rule}:\quad \int f\left(x\right)\pm g\left(x\right)dx=\int f\left(x\right)dx\pm \int g\left(x\right)dx\\= \pi \left(\int _1^3\left(1+\frac{2}{y}\right)^2dy-\int _1^31dy\right)\\\\](https://tex.z-dn.net/?f=V%5C%3A%3D%5C%3A%5Cint%20_1%5E3%5C%3A%5Cpi%20%5Cleft%5B%5Cleft%281%2B%5Cfrac%7B2%7D%7By%7D%5Cright%29%5E2-1%5Cright%5Ddy%2C%5C%5C%5C%5C%5Cmathrm%7BTake%5C%3Athe%5C%3Aconstant%5C%3Aout%7D%3A%5Cquad%20%5Cint%20a%5Ccdot%20f%5Cleft%28x%5Cright%29dx%3Da%5Ccdot%20%5Cint%20f%5Cleft%28x%5Cright%29dx%5C%5C%3D%5Cpi%20%5Ccdot%20%5Cint%20_1%5E3%5Cleft%281%2B%5Cfrac%7B2%7D%7By%7D%5Cright%29%5E2-1dy%5C%5C%5C%5C%5Cmathrm%7BApply%5C%3Athe%5C%3ASum%5C%3ARule%7D%3A%5Cquad%20%5Cint%20f%5Cleft%28x%5Cright%29%5Cpm%20g%5Cleft%28x%5Cright%29dx%3D%5Cint%20f%5Cleft%28x%5Cright%29dx%5Cpm%20%5Cint%20g%5Cleft%28x%5Cright%29dx%5C%5C%3D%20%5Cpi%20%5Cleft%28%5Cint%20_1%5E3%5Cleft%281%2B%5Cfrac%7B2%7D%7By%7D%5Cright%29%5E2dy-%5Cint%20_1%5E31dy%5Cright%29%5C%5C%5C%5C)

Our exact solution will be V = π(4In(3) + 8/3). In decimal form it will be about 22.2 however. Try both solution if you like, but it would be better to use 22.2. Your graph will just be a plot under the curve y = 2/x, the first graph.