1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Musya8 [376]
3 years ago
13

Help on hw NEED ASAP WILL SEND 90$

Mathematics
2 answers:
andriy [413]3 years ago
8 0
How do I need help like fr
BlackZzzverrR [31]3 years ago
3 0

Answer:

what's the question

Step-by-step explanation:

what's the question and no it will be for free <3

You might be interested in
What is the value of this expression when a = 2 and b = -3 ? a^3 - b^3 / 5
saveliy_v [14]

Answer:

13 2/5

Step-by-step explanation:

a = 2 and b = -3

so the question asks whats.... a^3 - b^3/5

First we plug in the values of a and b

(2)^3 - (-3)^3 /5

Now we solve the ones in paranthesis first

(2)^3 = 8 because 2×2×2 and

-(-3)^3 forget about the - outside the parenthesis so

(-3)^3 = (-27) because (-3)×(-3)×(-3)

now we put it back together

8 -(-27)/5

the two minus become plus so

8 + 27/5

Now we solve it like fractions

8 and 27/5

simplify

13 and 2/5

Hope that helps!

5 0
3 years ago
-8(1 + 5b) – 2(86 – 1) = 50
kati45 [8]

Answer:

b = -57/10

Step-by-step explanation:

Let's first distribute everything out:

-8(1 + 5b) = -8 * 1 + (-8) * 5b = -8 - 40b

2(86 - 1) = 2 * 85 = 170

So, we have:

-8 - 40b - 170 = 50

-40b - 178 = 50

-40b = 50 + 178 = 228

b = -228/40 = -57/10

Thus, the answer is b = -57/10.

Hope this helps!

3 0
3 years ago
Triangle QRP is congruent to triangle YXZ. What is the perimeter of triangle YXZ?
andre [41]

Answer:

Perimeter of XYZ = Perimeter of QRP

Step-by-step explanation:

Since congruent then

P of XYZ = P of QRP

7 0
3 years ago
99 POINT QUESTION, PLUS BRAINLIEST!!!
VladimirAG [237]
First, we have to convert our function (of x) into a function of y (we revolve the curve around the y-axis). So:


y=100-x^2\\\\x^2=100-y\qquad\bold{(1)}\\\\\boxed{x=\sqrt{100-y}}\qquad\bold{(2)} \\\\\\0\leq x\leq10\\\\y=100-0^2=100\qquad\wedge\qquad y=100-10^2=100-100=0\\\\\boxed{0\leq y\leq100}

And the derivative of x:

x'=\left(\sqrt{100-y}\right)'=\Big((100-y)^\frac{1}{2}\Big)'=\dfrac{1}{2}(100-y)^{-\frac{1}{2}}\cdot(100-y)'=\\\\\\=\dfrac{1}{2\sqrt{100-y}}\cdot(-1)=\boxed{-\dfrac{1}{2\sqrt{100-y}}}\qquad\bold{(3)}

Now, we can calculate the area of the surface:

A=2\pi\int\limits_0^{100}\sqrt{100-y}\sqrt{1+\left(-\dfrac{1}{2\sqrt{100-y}}\right)^2}\,\,dy=\\\\\\= 2\pi\int\limits_0^{100}\sqrt{100-y}\sqrt{1+\dfrac{1}{4(100-y)}}\,\,dy=(\star)

We could calculate this integral (not very hard, but long), or use (1), (2) and (3) to get:

(\star)=2\pi\int\limits_0^{100}1\cdot\sqrt{100-y}\sqrt{1+\dfrac{1}{4(100-y)}}\,\,dy=\left|\begin{array}{c}1=\dfrac{-2\sqrt{100-y}}{-2\sqrt{100-y}}\end{array}\right|= \\\\\\= 2\pi\int\limits_0^{100}\dfrac{-2\sqrt{100-y}}{-2\sqrt{100-y}}\cdot\sqrt{100-y}\cdot\sqrt{1+\dfrac{1}{4(100-y)}}\,\,dy=\\\\\\ 2\pi\int\limits_0^{100}-2\sqrt{100-y}\cdot\sqrt{100-y}\cdot\sqrt{1+\dfrac{1}{4(100-y)}}\cdot\dfrac{dy}{-2\sqrt{100-y}}=\\\\\\

=2\pi\int\limits_0^{100}-2\big(100-y\big)\cdot\sqrt{1+\dfrac{1}{4(100-y)}}\cdot\left(-\dfrac{1}{2\sqrt{100-y}}\, dy\right)\stackrel{\bold{(1)}\bold{(2)}\bold{(3)}}{=}\\\\\\= \left|\begin{array}{c}x=\sqrt{100-y}\\\\x^2=100-y\\\\dx=-\dfrac{1}{2\sqrt{100-y}}\, \,dy\\\\a=0\implies a'=\sqrt{100-0}=10\\\\b=100\implies b'=\sqrt{100-100}=0\end{array}\right|=\\\\\\= 2\pi\int\limits_{10}^0-2x^2\cdot\sqrt{1+\dfrac{1}{4x^2}}\,\,dx=(\text{swap limits})=\\\\\\

=2\pi\int\limits_0^{10}2x^2\cdot\sqrt{1+\dfrac{1}{4x^2}}\,\,dx= 4\pi\int\limits_0^{10}\sqrt{x^4}\cdot\sqrt{1+\dfrac{1}{4x^2}}\,\,dx=\\\\\\= 4\pi\int\limits_0^{10}\sqrt{x^4+\dfrac{x^4}{4x^2}}\,\,dx= 4\pi\int\limits_0^{10}\sqrt{x^4+\dfrac{x^2}{4}}\,\,dx=\\\\\\= 4\pi\int\limits_0^{10}\sqrt{\dfrac{x^2}{4}\left(4x^2+1\right)}\,\,dx= 4\pi\int\limits_0^{10}\dfrac{x}{2}\sqrt{4x^2+1}\,\,dx=\\\\\\=\boxed{2\pi\int\limits_0^{10}x\sqrt{4x^2+1}\,dx}

Calculate indefinite integral:

\int x\sqrt{4x^2+1}\,dx=\int\sqrt{4x^2+1}\cdot x\,dx=\left|\begin{array}{c}t=4x^2+1\\\\dt=8x\,dx\\\\\dfrac{dt}{8}=x\,dx\end{array}\right|=\int\sqrt{t}\cdot\dfrac{dt}{8}=\\\\\\=\dfrac{1}{8}\int t^\frac{1}{2}\,dt=\dfrac{1}{8}\cdot\dfrac{t^{\frac{1}{2}+1}}{\frac{1}{2}+1}=\dfrac{1}{8}\cdot\dfrac{t^\frac{3}{2}}{\frac{3}{2}}=\dfrac{2}{8\cdot3}\cdot t^\frac{3}{2}=\boxed{\dfrac{1}{12}\left(4x^2+1\right)^\frac{3}{2}}

And the area:

A=2\pi\int\limits_0^{10}x\sqrt{4x^2+1}\,dx=2\pi\cdot\dfrac{1}{12}\bigg[\left(4x^2+1\right)^\frac{3}{2}\bigg]_0^{10}=\\\\\\= \dfrac{\pi}{6}\left[\big(4\cdot10^2+1\big)^\frac{3}{2}-\big(4\cdot0^2+1\big)^\frac{3}{2}\right]=\dfrac{\pi}{6}\Big(\big401^\frac{3}{2}-1^\frac{3}{2}\Big)=\boxed{\dfrac{401^\frac{3}{2}-1}{6}\pi}

Answer D.
6 0
3 years ago
Read 2 more answers
How would you go on dividing 7/893​
love history [14]

Answer:

0.00783874

Step-by-step explanation:

7/893= 0.00783874

I just put it in the calculator  

3 0
3 years ago
Other questions:
  • Please help me do this math problem. It is open ended with no answer choices to choose from, and I am sooo confused about how to
    8·1 answer
  • Multiply. <br><br> 4 × 0.002 =
    12·1 answer
  • 72, 66, 60, 54, next three week
    9·1 answer
  • How we supposed to find the answer?
    13·2 answers
  • Solve the equation. plesse help.
    9·2 answers
  • A tent with a price of $165 is subject to a sales tax of 5%. What is the total price of the tent?
    14·1 answer
  • Estimate 11/12 times 4/5
    9·1 answer
  • Express as a trinomial. (3x-2)(2x+9)
    8·1 answer
  • Guyss help plss i need serious answer I'm buriéd with work plss beg :(​
    6·1 answer
  • Find the median and mean of the data set below:<br> 9,10,38,0,26,35,8
    13·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!