Answer:
is this the right question please??
For this parabola we have:
f ( 0 ) = 8
and : f ( 1 ) = 24
In the first equation ( A) :
f ( 0 ) = - 16 * ( 0 - 1 )² + 24 = - 16 * 1 + 24 = 8 ( correct )
f ( 1 ) = - 16 * ( 1 - 1 )² + 24 = 24 ( correct )
For B:
f ( 0 ) = - 16 * ( 0 + 1 )² + 24 = - 16 + 24 = 8 ( correct )
f ( 1 ) = - 16 * ( 1 + 1 )² + 24 = - 16 * 4 + 24 = - 64 + 24 = 40 ( false )
For C:
f ( 0 ) = - 16 * ( 0 - 1 )² - 24 = - 16 - 24 = - 40 ( false )
f ( 1 ) = - 16 * ( 1 - 1 )² - 24 = - 24 ( false )
For D:
f ( 0 ) = - 16 * ( 0 + 1 )² - 24 = - 16 - 24 = - 40 ( false )
f ( 1 ) = - 16 * ( 1 - 1 )² - 24 = - 24 ( false )
Answer:
A ) f ( t ) = - 16 * ( t - 1 )² + 24
Answer:
Possible derivation:
d/dx(a x + a y(x) + x a + y(x) a)
Rewrite the expression: a x + a y(x) + x a + y(x) a = 2 a x + 2 a y(x):
= d/dx(2 a x + 2 a y(x))
Differentiate the sum term by term and factor out constants:
= 2 a (d/dx(x)) + 2 a (d/dx(y(x)))
The derivative of x is 1:
= 2 a (d/dx(y(x))) + 1 2 a
Using the chain rule, d/dx(y(x)) = (dy(u))/(du) (du)/(dx), where u = x and d/(du)(y(u)) = y'(u):
= 2 a + d/dx(x) y'(x) 2 a
The derivative of x is 1:
= 2 a + 1 2 a y'(x)
Simplify the expression:
= 2 a + 2 a y'(x)
Simplify the expression:
Answer: = 2 a
Step-by-step explanation:
Answer:
A(x+6)+7y=7(x + 6) +y
Step-by-step explanation:
Hopefully this helps
1. Given that the width of the rectangle is x, and the area of the rectangle may be represented by the equation x^2 + 5x = 300, we can solve this equation for the width (x) as such:
x^2 + 5x = 300
x^2 + 5x - 300 = 0 (Subtract 300 from both sides)
(x - 15)(x + 20) = 0 (Factorise x^2 + 5x - 300)
From this, we get: x = 15 or x = -20
Since the width must be a positive length (ie. more than 0), -20 would be an invalid answer in the given context and thus the width is given by x = 15.
2. If we know that the length is 5 inches more than the width, we simply need to add 5 to the width we found above to obtain the length:
Length = x + 5
Length = 15 + 5 = 20
Thus, the width of the rectangle is 15 inches and the length of the rectangle is 20 inches.