Answer:
a) one solution(x = 9)
b) no solution
c) infinite solutions
Step-by-step explanation:
a) To solve this equation, we can add 4 on both sides in order to isolate x:
x - 4 =5
+ 4 + 4
x = 9
Since x equals 9, that counts as only one solution, as there is only one value of x that makes the equation true.
b) We start by subtracting 2x from both sides to combine the variable terms:
2x - 6 = 2x + 5
-2x -2x
-6 = 5
The statement, -6 = 5 is never true and it is not dependent on the value of x. This means there are no solutions to this equation.
c) We can start by subtracting 3x from both sides to combine the terms with x:
3x + 12 = 3x + 12
-3x -3x
12 = 12
The statement above is always true, and no matter the value of x, it will always be true. This means there are infinite solutions to the equation.
Which statement is not always true?(1) The product of two irrational numbers is irrational.
(2) The product of two rational numbers is rational.
(3) The sum of two rational numbers is rational.
(4) The sum of a rational number and an irrational number is irrational.
The statement that is not always true is the <span>sum of two rational numbers is rational. The answer is number 3.</span>
Answer:
x=0, - 9
Step-by-step explanation:
x^2+9x=0
x(x+9)=0
x=0 or x=-9
Answer:
A. 4.25p + 3.79c
b. 28.83
Step-by-step explanation:
4.25 x 5 = 21.25
3.79 x 2 = 7.58
Answer: (-2, 11/6)
Step-by-step explanation: