I think it is answer is b
Take the derivative with respect to t

the maximum and minimum values occur when the tangent line is zero so we set the derivative to zero

divide by w

we add sin(wt) to both sides

divide both sides by cos(wt)

OR

(wt)=2(n*pi-arctan(2^0.5))
(wt)=2(n*pi+arctan(2^-0.5))
where n is an integer
the absolute max and min will be

since 2npi is just the period of cos

substituting our second soultion we get

since 2npi is the period

so the maximum value =

minimum value =
Answer: C.) Congruent (or third option)
Answer:
y = 0.5x + 3
Step-by-step explanation:
Answer:
Equation of line is y=(12/5)x+2
Step-by-step explanation:
The slope of line AB is -5/12. The line passing X is perpendicular to line AB and hence have a slope of 12/5. The slope intercept form is given by y=mx+c.
Now, point X satisfies the equation. Plugging in the slope of the line we end up with
y=(12/5)*x+c, now to find c
-10=(12/5)*(-5)+c, c=2
Equation of line is y=(12/5)x+2