Answer:
Repeating decimal
Step-by-step explanation:
The bar over any number to the right of a decimal point denotes that the number is recurring. Meaning that if the bar (line) is over the number 3 in 0.3, the number 3 is being repeated infinitely. (0.333333333333333333....)
These types of decimals are known as repeating or recurring decimals.
Hope this helps!
I hope i dont any mistake :p tell me if u dont understand :)
Answer:
See attached picture.
Step-by-step explanation:
Find critical points to graph the rational function.
When x = 0, then y = 5 / 2 = 2.5.
When y=0, then 0=-3x+5 and x= 5/3 =1.6667.
Plot the points (0,2.5) and (1.6667, 0). Then draw the "L" shape graphs of the rational function.
Answer:
Step-by-step explanation:
4x+6+3x+8=28
combine like terms
7x+14=28
subtract 14
7x=14
divide
x=2
if you plug it in you get-
4(2)+6+3(2)+8=
8+6+6+8=12+16=28
thats how you can check. if you want me to explain more i can totally help
see the attached figure with the letters
1) find m(x) in the interval A,BA (0,100) B(50,40) -------------- > p=(y2-y1(/(x2-x1)=(40-100)/(50-0)=-6/5
m=px+b---------- > 100=(-6/5)*0 +b------------- > b=100
mAB=(-6/5)x+100
2) find m(x) in the interval B,CB(50,40) C(100,100) -------------- > p=(y2-y1(/(x2-x1)=(100-40)/(100-50)=6/5
m=px+b---------- > 40=(6/5)*50 +b------------- > b=-20
mBC=(6/5)x-20
3)
find n(x) in the interval A,BA (0,0) B(50,60) -------------- > p=(y2-y1(/(x2-x1)=(60)/(50)=6/5
n=px+b---------- > 0=(6/5)*0 +b------------- > b=0
nAB=(6/5)x
4) find n(x) in the interval B,CB(50,60) C(100,90) -------------- > p=(y2-y1(/(x2-x1)=(90-60)/(100-50)=3/5
n=px+b---------- > 60=(3/5)*50 +b------------- > b=30
nBC=(3/5)x+30
5) find h(x) = n(m(x)) in the interval A,B
mAB=(-6/5)x+100
nAB=(6/5)x
then
n(m(x))=(6/5)*[(-6/5)x+100]=(-36/25)x+120
h(x)=(-36/25)x+120
find <span>h'(x)
</span>h'(x)=-36/25=-1.44
6) find h(x) = n(m(x)) in the interval B,C
mBC=(6/5)x-20
nBC=(3/5)x+30
then
n(m(x))=(3/5)*[(6/5)x-20]+30 =(18/25)x-12+30=(18/25)x+18
h(x)=(18/25)x+18
find h'(x)
h'(x)=18/25=0.72
for the interval (A,B) h'(x)=-1.44
for the interval (B,C) h'(x)= 0.72
<span> h'(x) = 1.44 ------------ > not exist</span>