1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Debora [2.8K]
2 years ago
6

PLZ HELP WILL MAKE BRAINLEIST

Mathematics
2 answers:
HACTEHA [7]2 years ago
8 0

Answer:

Step-by-step explanation:

'

Jlenok [28]2 years ago
3 0
(1,2)
The solution is where the lines intersect so you can see they intersect at (1,2)
You might be interested in
What do I have?<br> what do I need ?<br>what should I use?
Ulleksa [173]
For a:
you have your opposite side
you need your hypotenuse
you should use the s.o.h

4 0
3 years ago
Help me with this please
natita [175]
Could you maybe rotate the picture so we can see it better?
5 0
3 years ago
Read 2 more answers
(5) Find the Laplace transform of the following time functions: (a) f(t) = 20.5 + 10t + t 2 + δ(t), where δ(t) is the unit impul
Aloiza [94]

Answer

(a) F(s) = \frac{20.5}{s} - \frac{10}{s^2} - \frac{2}{s^3}

(b) F(s) = \frac{-1}{s + 1} - \frac{4}{s + 4} - \frac{4}{9(s + 1)^2}

Step-by-step explanation:

(a) f(t) = 20.5 + 10t + t^2 + δ(t)

where δ(t) = unit impulse function

The Laplace transform of function f(t) is given as:

F(s) = \int\limits^a_0 f(s)e^{-st} \, dt

where a = ∞

=>  F(s) = \int\limits^a_0 {(20.5 + 10t + t^2 + d(t))e^{-st} \, dt

where d(t) = δ(t)

=> F(s) = \int\limits^a_0 {(20.5e^{-st} + 10te^{-st} + t^2e^{-st} + d(t)e^{-st}) \, dt

Integrating, we have:

=> F(s) = (20.5\frac{e^{-st}}{s} - 10\frac{(t + 1)e^{-st}}{s^2} - \frac{(st(st + 2) + 2)e^{-st}}{s^3}  )\left \{ {{a} \atop {0}} \right.

Inputting the boundary conditions t = a = ∞, t = 0:

F(s) = \frac{20.5}{s} - \frac{10}{s^2} - \frac{2}{s^3}

(b) f(t) = e^{-t} + 4e^{-4t} + te^{-3t}

The Laplace transform of function f(t) is given as:

F(s) = \int\limits^a_0 (e^{-t} + 4e^{-4t} + te^{-3t} )e^{-st} \, dt

F(s) = \int\limits^a_0 (e^{-t}e^{-st} + 4e^{-4t}e^{-st} + te^{-3t}e^{-st} ) \, dt

F(s) = \int\limits^a_0 (e^{-t(1 + s)} + 4e^{-t(4 + s)} + te^{-t(3 + s)} ) \, dt

Integrating, we have:

F(s) = [\frac{-e^{-(s + 1)t}} {s + 1} - \frac{4e^{-(s + 4)}}{s + 4} - \frac{(3(s + 1)t + 1)e^{-3(s + 1)t})}{9(s + 1)^2}] \left \{ {{a} \atop {0}} \right.

Inputting the boundary condition, t = a = ∞, t = 0:

F(s) = \frac{-1}{s + 1} - \frac{4}{s + 4} - \frac{4}{9(s + 1)^2}

3 0
3 years ago
Work out the difference between 5/9and4/9
tatiyna

Answer:

1/9

Step-by-step explanation:

Subtract them

5/9-4/9=1/9 Answer

7 0
3 years ago
(2n + 3)(n – 4) = 0<br> need help asap!!!
Anastaziya [24]
Set each binomial equal to zero to solve. 

2n + 3 = 0
2n = - 3
n = - 3 / 2

n - 4 = 0
n = 4

So n = -3/2, 4


6 0
3 years ago
Other questions:
  • Ribbon is sold by the yard.If the cost is $2.79 per yard,how much does the ribbon cost per inch?
    6·2 answers
  • 3 over 8 plus 2 over 3 plus 1 over 3
    10·2 answers
  • Tara walks 2 miles in 30 minutes At this rate,how far can Tara walk in 45 minutes?​
    9·1 answer
  • Which of the following are solutions?
    14·1 answer
  • How to convert a scientific notation into percent??
    9·2 answers
  • The table shows the dimensions of four wedges.
    7·2 answers
  • Which of the following values are in the range of the function graphed below? Check all that apply​
    10·1 answer
  • The Pythagorean Theorem applies to any type of triangle.
    14·2 answers
  • In a three digit number, the tens digit is thrice the unit digit and hundred’s digit is
    15·1 answer
  • HELPPPPPPPPP PLEASE PLEASE
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!