Step-by-step explanation:
1. x = acceptable weight of candy bar
2. |x - 12| ≤ 0.45
3. x - 12 ≤ 0.45, x - 12 ≥ -0.45
x ≤ 12.45, x ≥ 11.55
4. The acceptable weight range for each candy bar is between 11.55 grams and 12.45 grams.
Answer:
No, because one x-value corresponds to two different y-value.
Step-by-step explanation:
On the X side of the table you can see two sixes but the two sixes corresponds to two different numbers on the Y side of the table.
You could simplify this work by factoring "3" out of all four terms, as follows:
3(x^2 + 2x - 3) =3(0) = 0
Hold the 3 for later re-insertion. Focus on "completing the square" of x^2 + 2x - 3.
1. Take the coefficient (2) of x and halve it: 2 divided by 2 is 1
2. Square this result: 1^2 = 1
3. Add this result (1) to x^2 + 2x, holding the "-3" for later:
x^2 +2x
4 Subtract (1) from x^2 + 2x + 1: x^2 + 2x + 1 -3 -1 = 0,
or x^2 + 2x + 1 - 4 = 0
5. Simplify, remembering that x^2 + 2x + 1 is a perfect square:
(x+1)^2 - 4 = 0
We have "completed the square." We can stop here. or, we could solve for x: one way would be to factor the left side:
[(x+1)-2][(x+1)+2]=0 The solutions would then be:
x+1-2=0=> x-1=0, or x=1, and
x+1 +2 = 0 => x+3=0, or x=-3. (you were not asked to do this).
Answer:
6/12 or 1/2
Step-by-step explanation:
Since 11/12 and 5/12 have the same denominator (12), I didn't need to worry about anything pertaining to it. And because I didn't need to do anything that had to do with the denominator (12), I just did 11-5 (6), and made it 6/12, which is equivalent to 1/2. Hope this helped!