Answer:
= 0.315
Step-by-step explanation:
hope this helps :)
Answer:
6.83 units
Step-by-step explanation:
Let the height of the original pyramid be represented by h. Then the cut off top has a height of (h -2). The scale factor for the area is the square of the scale factor for height, so we have ...
(height ratio)^2 = 1/2
((h -2)/h)^2 = 1/2
(h -2)√2 = h . . . . . . square root; multiply by h√2
h(√2 -1) = 2√2 . . . . add 2√2 -h
h = (2√2)/(√2 -1) ≈ 6.8284 . . . units
The altitude of the original pyramid is about 6.83 units.
Answer:
y= ab if a≠b
Step-by-step explanation:
y/a −b= y/b −a
multiply each side by ab to clear the fractions
ab(y/a −b) = ab( y/b −a)
distribute
ab * y/a - ab*b = ab * y/b - ab *a
b*y - ab^2 = ay -a^2 b
subtract ay on each side
by -ay -ab^2 = ay-ay -a^2b
by -ay -ab^2 =-a^2b
add ab^2 to each side
by-ay -ab^2 +ab^2 = ab^2 - a^2b
by-ay = ab^2 - a^2b
factor out the y on the left, factor out an ab on the right
y (b-a) = ab(b-a)
divide by (b-a)
y (b-a) /(b-a)= ab(b-a)/(b-a) b-a ≠0 or b≠a
y = ab
Answer:
59400
Step-by-step explanation: