Using electronegativity difference is a good guide to the ionic/ covalent nature. Large differences indicate greater ionic character, small differences more covalent character. The larger the difference in electronegativity the more ionic properties a bond is said to have. The smaller the difference in electronegativity the more covalent properties a bond is said to have.
Ionic bonding is formed through electrostatic attraction between a cation and anion. Foe example, Sodium fluoride has ionic bonding because it is composed by sodium and Fluorine (a non metal). On the other hand, covalent bonding is characterized by atoms sharing pairs of electrons. For example; methane has covalent bonding; carbon has 4 valence electrons and hydrogen has 1; when they bond they have a total of 8 electrons and satisfies the octet rule.
Answer:
Ca3(PO4)2
Explanation:
Ca3(PO4)2 or calcium phosphate is insoluble in water.
Answer:
it is formed by covalent bonds. the oxygen atom shares one elctron with each chlorine atom, forming single covalent bonds ( cl — o — cl )
First, We have to write the equation for neutralization:
Ba(OH)2 + 2HCl → BaCl2 + 2H2O
so, from the equation of neutralization, we can get the ratio between Ba(OH)2 and HCl. Ba(OH)2 : HCl = 1:2
- We have to get the no.of moles of Ba(OH)2 to do the neutralization as we have 25.9ml of 3.4 x 10^-3 M Ba(OH)2.
So no.of moles of Ba(OH)2 = (25.9ml/1000) * 3.4x10^-3 = 8.8 x 10^-5 mol
and when Ba(OH)2 : HCl = 1: 2
So the no.of moles of HCl = 2 * ( 8.8x10^-5) = 1.76 x 10^-4 mol
So when we have 1.76X10^-4 Mol in 16.6 ml (and we need to get it per liter)
∴ the molarity = no.of moles / mass weight
= (1.76 x 10^-4 / 16.6ml)* (1000ml/L) = 0.0106 M Hcl
1, When temperature is increased the volume will also increase. this is because the particles will gain kinetic energy and bombard the walls of the container of the gas at a higher frequency, therefore, for the pressure to remain constant as per Charles' law, the volume will have to increase so that the rate of bombardment remains constant. This is explained by the Charles law which states that the volume of a gas is directly proportional to the absolute temperature provided pressure remains constant.
2. When temperature is Decreased the volume will also Decrease. this is because the particles will loose kinetic energy and bombard the walls of the container of the gas less frequently, therefore, for the pressure to remain constant as per Charles' law, the volume will have to reduce so that the rate of bombardment remains constant. This is explained by the Charles law which states that the volume of a gas is directly proportional to the absolute temperature provided pressure remains constant.
3. When temperature is increased the pressure will increase. This is because the gas particles gain kinetic energy and bombard the walls of the container more frequently. this is according to Pressure law which states that for a constant volume of a gas the pressure is directly proportional to absolute temperature
4. When temperature is decreased, pressure will decrease, This is because the gas particles lose kinetic energy and bombard the walls of the container less frequently. this is according to Pressure law which states that for a constant volume of a gas the pressure is directly proportional to absolute temperature
5. When particles are added, pressure will increase. This is because the bombardment per unit area also increases. Boyles law explains this, that at fixed temperature the volume of a gas is inversely proportional to the pressure.
6. When particles are removed, the pressure will decrease. This is because the bombardment per unit area also decreases. Boyle's law explains this, that at fixed temperature the volume of a gas is inversely proportional to the pressure.