Answer:
The force of the radiation on the surface is 3.33 X 10⁻¹⁰ N
Explanation:
Given;
intensity of light, I = 1 kw/m²
area of the surface, A = 1 cm² = 1 x 10⁻⁴ m²
Power of the incident light, P = I x A
Power of the incident light, P = (1 kw/m²) x (1 x 10⁻⁴ m²)
Power of the incident light, P = 1 x 10⁻⁴ kW = 0.1 W
Power of the incident light is given by;
P = Fv
where;
F is the force of the radiation on the surface
v is the speed of light = 3 x 10⁸ m/s
F = P/ v
F = (0.1) / (3 x 10⁸)
F = 3.33 X 10⁻¹⁰ N
Therefore, the force of the radiation on the surface is 3.33 X 10⁻¹⁰ N
Answer:
1.The main purpose of lab is to perform different experiments and importance of topic is that it supports essay's thesis statement.
Explanation:
I don’t understand the question
Answer:
the graph would lower down if we are talking about speed because the velocity stops going and theres no more kinetic energy to cause any speed
Explanation:
First, we will get the distance traveled before the driver applied the brakes.
distance = velocity * time
distance = 25*0.34 = 8.5 m
Now, we will calculated the distance that the car traveled after the driver applied the brakes. To do this, we will use the equation of motion:
<span>vf^2 = vi^2 + 2*a*d where:
</span>vf = zero, vi = 25 m/s and a = -7 m/s^2
Note: The negative sign is only to show deceleration
d = <span> 1/2*(625) /(7) = 44.6428 m
The total stopping distance =</span> 8.5 + 44.6428 = 53.1428 m