Answer:
For many centuries, smallpox devastated mankind. In modern times we do not have to worry about it thanks to the remarkable work of Edward Jenner and later developments from his endeavors. With the rapid pace of vaccine development in recent decades, the historic origins of immunization are often forgotten. Unfortunately, since the attack on the World Trade Center on September 11, 2001, the threat of biological warfare and bioterrorism has reemerged. Smallpox has been identified as a possible agent of bioterrorism (1). It seems prudent to review the history of a disease known to few people in the 21st century.
Edward Jenner is well known around the world for his innovative contribution to immunization and the ultimate eradication of smallpox (2). Jenner's work is widely regarded as the foundation of immunology—despite the fact that he was neither the first to suggest that infection with cowpox conferred specific immunity to smallpox nor the first to attempt cowpox inoculation for this purpose.
Explanation:
B because it’s talking about the tree itself. Saying that it’s plants would divert it to a different plant. The cells of the wood is what makes the tree and is relevant to the question
<h2>Muscle contraction in cytoplasm </h2>
Explanation:
- Calcium stays in the sarcoplasmic reticulum until discharged by an improvement. Calcium at that point ties to troponin, causing the troponin to change shape and expel the tropomyosin from the coupling destinations. Cross-connect stick proceeds until the calcium particles and ATP are never again accessible.
- ATP is basic to get ready myosin for official and to "revive" the myosin.
- When the actin-restricting destinations are revealed, the high-vitality myosin head overcomes any issues, framing a cross-connect. When myosin ties to the actin, the Pi is discharged, and the myosin experiences a conformational change to a lower vitality state. As myosin consumes the vitality, it travels through the "power stroke," pulling the actin fiber toward the M-line.
Each human has 2 alleles and are called diploid organisms. We receive 1 allele from each biological parent.
Answer:
adenine is the correct answer for first