Answer:
(-3, 4)
General Formulas and Concepts:
<u>Pre-Algebra</u>
Order of Operations: BPEMDAS
- Brackets
- Parenthesis
- Exponents
- Multiplication
- Division
- Addition
- Subtraction
Equality Properties
- Multiplication Property of Equality
- Division Property of Equality
- Addition Property of Equality
- Subtract Property of Equality
<u>Algebra I</u>
- Terms/Coefficients
- Solving systems of equations using substitution/elimination
Step-by-step explanation:
<u>Step 1: Define Systems</u>
y = -x + 1
2x + 3y = 6
<u>Step 2: Solve for </u><em><u>x</u></em>
<em>Substitution</em>
- Substitute in <em>y</em>: 2x + 3(-x + 1) = 6
- Distribute 3: 2x - 3x + 3 = 6
- Combine like terms: -x + 3 = 6
- Isolate <em>x</em> terms: -x = 3
- Isolate <em>x</em>: x = -3
<u>Step 3: Solve for </u><em><u>y</u></em>
- Define equation: y = -x + 1
- Substitute in <em>x</em>: y = -(-3) + 1
- Simplify: y = 3 + 1
- Add: y = 4
Answer:
x=4
Step-by-step explanation:
(whole secant) x (external part) = (tangent)^2
(x+5) *x = 6^2
x^2 +5x = 36
Subtract 36 from each side
x^2 +5x - 36 = 0
Factor
( x-4) (x+9) = 0
Using the zero product property
x-4 = 0 x+9 =0
x = 4 x=-9
Cannot be negative since that is negative length
x=4
Enter a problem...
Calculus Examples
Popular Problems Calculus Find the Domain and Range f(x)=5x-3
f
(
x
)
=
5
x
−
3
The domain of the expression is all real numbers except where the expression is undefined. In this case, there is no real number that makes the expression undefined.
Interval Notation:
(
−
∞
,
∞
)
Set-Builder Notation:
{
x
|
x
∈
R
}
The range is the set of all valid
y
values. Use the graph to find the range.
Interval Notation:
(
−
∞
,
∞
)
Set-Builder Notation:
{
y
|
y
∈
R
}
Determine the domain and range.
Domain:
(
−
∞
,
∞
)
,
{
x
|
x
∈
R
}
Range:
(
−
∞
,
∞
)
,
{
y
|
y
∈
R
}
Answer:
Step-by-step explanation: