Answer:
- y = 0.937976x +12.765
- $12,765
- $31,524
- the cost increase each year
Step-by-step explanation:
1. For this sort of question a graphing calculator or spreadsheet are suitable tools. The attached shows the linear regression line to have the equation ...
... y = 0.937976x + 12.765
where x is years since 2000, and y is average tuition cost in thousands.
2. The y-intercept is the year-2000 tuition: $12,765.
3. Evaluating the formula for x=20 gives y ≈ 31.524, so the year-2020 tuition is expected to be $31,524.
4. The slope is the rate of change of tuition with respect to number of years. It is the average increase per year (in thousands). It amounts to about $938 per year.
5. [not a math question]
B. 19.8
Use the Pythagorean theorem:
14.2^ + x^ = 24.4^
201.64 + x^ = 595.36
x^ = 393.72
x = 19.84
Answer:
B) a = 6.7, B = 36°, C = 49°
Step-by-step explanation:
Fill in the numbers in the Law of Cosines formula to find the value of "a".
a² = b² + c² -2bc·cos(A)
a² = 4² +5² -2(4)(5)cos(95°) ≈ 44.4862
a ≈ √44.4862 ≈ 6.66980
Now, the law of sines is used to find one of the remaining angles. The larger angle will be found from ...
sin(C)/c = sin(A)/a
sin(C) = (c/a)sin(A)
C = arcsin(5/6.6698×sin(95°)) ≈ 48.31°
The third angle is ...
B = 180° -A -C = 180° -95° -48.31° = 36.69°
The closest match to a = 6.7, B = 37°, C = 48° is answer choice B.
Minimum required sample size for a desired margin of error and confidence level when it is a proportion problem: n = (z2÷margin of error2)*p-hat*q-hat
The maximum value of p-hat*q-hat occurs where p-hat = .5 (found by taking the derivative of (p-hat)*(1-p-hat) and setting it equal to 0 to find the maximum. n = ( 2.5762( for 99% confidence interval)÷.0482 )*.5*.5 = 720.028 or 721
Answer:
F=$3810
Step-by-step explanation:

F= future value
P= present value
i = interest
n= number of times money compounded
P=$3000 i=6% n = 2 X 4= 8
As this is semiannual so 6%/2=3%



